Telegram Group & Telegram Channel
Пусть p — большое простое число (хотя бы 5). В каком диапазоне известна p-компонента в стабильных гомотопических группах сфер?

Зафиксирую тут, что нагуглил. Удобно обозначить q:=2p-2.

-1. Методом убивающих пространств легко показать, что в размерностях <2q есть только одна копия Z/p, которая сидит в q-ой группе. То есть легко досчитать примерно до ~4p. При p=5 получается 15.

0. Hirosi Toda в серии статей "p-primary components of homotopy groups" (1958-1959) досчитал до p^2q-4, то есть примерно до 2p^3. При p=5 получается 196. Видимо, он комбинировал метод убивающих пространств с EHP-последовательностями, композициями, скобками Тоды. В книжке "Композиционные методы..." почему-то сформулирован результат только до размерности pq-2 ~ 2p^2; не знаю, почему.

1. Методами Тоды много считал Shichiro Oka. В серии статей The Stable Homotopy Groups of Spheres (1971-1975) этим методом он посчитал компоненты до размерности (2p^2+p-2)q-6, то есть примерно до 4p^3. При p=5 получается 416.

2. Комбинируя с вычислениями Накамуры* второго листа в с.п. Адамса, Ока смог продвинуться ещё на 4p размерностей и добраться до (2p^2+p)q-4. При p=5 получается 436.

3. Используя те же вычисления Накамуры, но для с.п. Адамса-Новикова (и спектра Брауна-Петерсона, следуя Миллеру и Нейзендорферу), Marc Aubry посчитал компоненты до размерности
(3p^2+4p)q-1, то есть примерно до 6p^3. При p=5 получается 759.
(статья "Calculs de groupes d'homotopie stables de la sphere, par la suite spectrale d'Adams-Novikov", 1984. Это диссертация под руководством Лемэра.)

4. В книжке Douglas Ravenel "Complex cobordism and stable homotopy groups of spheres" (1986) предлагается некий "метод бесконечного спуска" (использующий, помимо с.п. А.-Н., всякие накопленные знания про BP, хроматическую теорию, введённые Равенелем спектры T(m)...).
Равенел не говорит, насколько далеко удаётся продвинуться для любого p, но при p=5 проводит показательные вычисления и добирается до 999.

5. Наконец, в тексте Hirofumi Nakai, Douglas Ravenel "The method of infinite descent in stable homotopy theory II" высказана надежда, что примерно теми же методами можно добраться примерно до p^4q ~ 2p^5. Этот текст появился как препринт в 2008, выложен на архив в 2018, опубликован в 2024 в New York Journal of Mathematics. При публикации в нём появился абзац:

It is unlikely that either author will take up this computational project any time soon. The purpose of the present paper is to document what we believe to be the most promising method of extending the computation of [Rav04, Chapter 7] in hopes that some more energetic mathematicians will use it in the future.

*Osamu Nakamura, On the cohomology of the mod p Steenrod algebra (1975)

P.S. Конечно, в описанных размерностях известны не только группы, но и композиционные умножения между ними; у Aubry соответствующая алгебра даже задана образующими и соотношениями



group-telegram.com/sweet_homotopy/2040
Create:
Last Update:

Пусть p — большое простое число (хотя бы 5). В каком диапазоне известна p-компонента в стабильных гомотопических группах сфер?

Зафиксирую тут, что нагуглил. Удобно обозначить q:=2p-2.

-1. Методом убивающих пространств легко показать, что в размерностях <2q есть только одна копия Z/p, которая сидит в q-ой группе. То есть легко досчитать примерно до ~4p. При p=5 получается 15.

0. Hirosi Toda в серии статей "p-primary components of homotopy groups" (1958-1959) досчитал до p^2q-4, то есть примерно до 2p^3. При p=5 получается 196. Видимо, он комбинировал метод убивающих пространств с EHP-последовательностями, композициями, скобками Тоды. В книжке "Композиционные методы..." почему-то сформулирован результат только до размерности pq-2 ~ 2p^2; не знаю, почему.

1. Методами Тоды много считал Shichiro Oka. В серии статей The Stable Homotopy Groups of Spheres (1971-1975) этим методом он посчитал компоненты до размерности (2p^2+p-2)q-6, то есть примерно до 4p^3. При p=5 получается 416.

2. Комбинируя с вычислениями Накамуры* второго листа в с.п. Адамса, Ока смог продвинуться ещё на 4p размерностей и добраться до (2p^2+p)q-4. При p=5 получается 436.

3. Используя те же вычисления Накамуры, но для с.п. Адамса-Новикова (и спектра Брауна-Петерсона, следуя Миллеру и Нейзендорферу), Marc Aubry посчитал компоненты до размерности
(3p^2+4p)q-1, то есть примерно до 6p^3. При p=5 получается 759.
(статья "Calculs de groupes d'homotopie stables de la sphere, par la suite spectrale d'Adams-Novikov", 1984. Это диссертация под руководством Лемэра.)

4. В книжке Douglas Ravenel "Complex cobordism and stable homotopy groups of spheres" (1986) предлагается некий "метод бесконечного спуска" (использующий, помимо с.п. А.-Н., всякие накопленные знания про BP, хроматическую теорию, введённые Равенелем спектры T(m)...).
Равенел не говорит, насколько далеко удаётся продвинуться для любого p, но при p=5 проводит показательные вычисления и добирается до 999.

5. Наконец, в тексте Hirofumi Nakai, Douglas Ravenel "The method of infinite descent in stable homotopy theory II" высказана надежда, что примерно теми же методами можно добраться примерно до p^4q ~ 2p^5. Этот текст появился как препринт в 2008, выложен на архив в 2018, опубликован в 2024 в New York Journal of Mathematics. При публикации в нём появился абзац:

It is unlikely that either author will take up this computational project any time soon. The purpose of the present paper is to document what we believe to be the most promising method of extending the computation of [Rav04, Chapter 7] in hopes that some more energetic mathematicians will use it in the future.

*Osamu Nakamura, On the cohomology of the mod p Steenrod algebra (1975)

P.S. Конечно, в описанных размерностях известны не только группы, но и композиционные умножения между ними; у Aubry соответствующая алгебра даже задана образующими и соотношениями

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2040

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform.
from sg


Telegram сладко стянул
FROM American