Telegram Group & Telegram Channel
Подборка материалов по статистике: обновление

Я давно составляла и размещала на канале рекомендуемые источники по статистике, однако кое-что устарело, плюс нашла еще классные материалы, так что решила обновить.

Книги
1) Статистика и котики из старой подборки пусть остаются, книга критикуется где-то за излишние упрощения, но для старта все еще неплохо.

2) Медико-биологическая статистика Гланца пусть тоже остается, хотя я сама недолюбливаю эту книгу, по крайней мере перевод на русский язык. В нем много небольших неточностей, например достоверность вместо статистической значимости, плюс переведено только старое издание, в котором нет упоминаний поправок на множественное тестирование FDR. Однако во многих чатах его советуют, поэтому оставляю в подборке.

3) Статистика для всех (Statistics in a nutshell) Сары Бослаф неплохая книга, однако в переводе большинство терминов насильно переведены на русский (иногда довольно неудачно), и плохо, что не дано исходного термина на английском, поскольку гуглить придется все равно так. Читать рекомендую самое свежее издание, благо найти в интернете легко.

4) Анализ данных и статистика в R Ивана Позднякова, что хорошо, автор постоянно обновляет часть по R (особенно по tidyverse) и дополняет часть по статистике, например многомерные методы. Материалы вплоть до обобщенной линейной модели доступны, написано хорошо, в общем рекомендую.

5) Рандомизация и бутстреп: статистический анализ в биологии и экологии с использованием R. В.К. Шитиков, Г.С. Розенберг. Остаются с предыдущей подборки.

Курсы

У меня в старой подборке есть однозначная рекомендация курсов Анатолия Карпова по статистике, однако после длительных дискуссий на тему качества этих курсов, я пересмотрела первую часть (Основы статистики).
Соглашусь, что действительно много неточностей как мелких, так и иногда довольно существенных в этом курсе. Следовательно, сейчас я не могу рекомендовать его, поскольку вышло много бесплатных и более качественных материалов (однако для 2013го года это был хороший продукт, так как русскоязычных курсов по статистике практически не было). Возможно, я сделаю более подробный разбор неточностей, которые я собрала, но пока не классифицировала и не оформила в пост.

Следовательно, рекомендую:
1) Курсы Марины Варфоломеевой: Линейные модели, дисперсионный и регрессионный анализ с использованием R, с еще несколькими курсами можно ознакомиться здесь. Наткнулась на материалы практически случайно, увидела что в других чатах тоже рекомендуют, сама кое-какие идеи оттуда брала для своих лекций (конечно с ссылкой на источник). Очень качественно и подробно разобрано практически все, с чем можно столкнуться в статистике, супер круто, что такие материалы есть в открытом доступе.

2) Курс Data Analysis with R Specialization на курсере, я сама не проходила, но много где советовали, программа очень солидная.

3) Платные курсы от Института биоинформатики и бластима. Ссылки кидать не буду, но они легко гуглятся, если кто-то не найдет, пишите в личку или в комменты. На бластиме я преподавала, как многие тут уже знают, могу ручаться за качество лекций и поддержки ассистентов. Курсы или точнее программы повышения квалификации от института биоинформатики тоже однозначно рекомендую, много общалась с людьми оттуда, делают очень качественный продукт.

Ютуб-каналы

1) StatQuest - отличный канал с короткими, но очень четкими разборами конкретных тем по статистике. У автора забавный стиль изложения, с приколами и всякими фразочками, сам он биоинформатик (а по первому образованию музыкант).
2) TileStats - пожалуй еще лучше чем первый канал (хоть и малоизвестный). Тоже формат коротких видео, где наглядно показывается применение формул, как это выглядит на графике и что означает. Абсолютно незаменим для подготовки собственных лекций, очень удачные идеи по визуализации сложных концептов. Стиль изложения более строгий, без забавных фразочек, но все равно максимально понятно.

Если что-то забыла из хороших материалов, пишите комментарии, буду стараться держать подборку лучших книг и курсов всегда обновленной!

#recommendation



group-telegram.com/stats_for_science/73
Create:
Last Update:

Подборка материалов по статистике: обновление

Я давно составляла и размещала на канале рекомендуемые источники по статистике, однако кое-что устарело, плюс нашла еще классные материалы, так что решила обновить.

Книги
1) Статистика и котики из старой подборки пусть остаются, книга критикуется где-то за излишние упрощения, но для старта все еще неплохо.

2) Медико-биологическая статистика Гланца пусть тоже остается, хотя я сама недолюбливаю эту книгу, по крайней мере перевод на русский язык. В нем много небольших неточностей, например достоверность вместо статистической значимости, плюс переведено только старое издание, в котором нет упоминаний поправок на множественное тестирование FDR. Однако во многих чатах его советуют, поэтому оставляю в подборке.

3) Статистика для всех (Statistics in a nutshell) Сары Бослаф неплохая книга, однако в переводе большинство терминов насильно переведены на русский (иногда довольно неудачно), и плохо, что не дано исходного термина на английском, поскольку гуглить придется все равно так. Читать рекомендую самое свежее издание, благо найти в интернете легко.

4) Анализ данных и статистика в R Ивана Позднякова, что хорошо, автор постоянно обновляет часть по R (особенно по tidyverse) и дополняет часть по статистике, например многомерные методы. Материалы вплоть до обобщенной линейной модели доступны, написано хорошо, в общем рекомендую.

5) Рандомизация и бутстреп: статистический анализ в биологии и экологии с использованием R. В.К. Шитиков, Г.С. Розенберг. Остаются с предыдущей подборки.

Курсы

У меня в старой подборке есть однозначная рекомендация курсов Анатолия Карпова по статистике, однако после длительных дискуссий на тему качества этих курсов, я пересмотрела первую часть (Основы статистики).
Соглашусь, что действительно много неточностей как мелких, так и иногда довольно существенных в этом курсе. Следовательно, сейчас я не могу рекомендовать его, поскольку вышло много бесплатных и более качественных материалов (однако для 2013го года это был хороший продукт, так как русскоязычных курсов по статистике практически не было). Возможно, я сделаю более подробный разбор неточностей, которые я собрала, но пока не классифицировала и не оформила в пост.

Следовательно, рекомендую:
1) Курсы Марины Варфоломеевой: Линейные модели, дисперсионный и регрессионный анализ с использованием R, с еще несколькими курсами можно ознакомиться здесь. Наткнулась на материалы практически случайно, увидела что в других чатах тоже рекомендуют, сама кое-какие идеи оттуда брала для своих лекций (конечно с ссылкой на источник). Очень качественно и подробно разобрано практически все, с чем можно столкнуться в статистике, супер круто, что такие материалы есть в открытом доступе.

2) Курс Data Analysis with R Specialization на курсере, я сама не проходила, но много где советовали, программа очень солидная.

3) Платные курсы от Института биоинформатики и бластима. Ссылки кидать не буду, но они легко гуглятся, если кто-то не найдет, пишите в личку или в комменты. На бластиме я преподавала, как многие тут уже знают, могу ручаться за качество лекций и поддержки ассистентов. Курсы или точнее программы повышения квалификации от института биоинформатики тоже однозначно рекомендую, много общалась с людьми оттуда, делают очень качественный продукт.

Ютуб-каналы

1) StatQuest - отличный канал с короткими, но очень четкими разборами конкретных тем по статистике. У автора забавный стиль изложения, с приколами и всякими фразочками, сам он биоинформатик (а по первому образованию музыкант).
2) TileStats - пожалуй еще лучше чем первый канал (хоть и малоизвестный). Тоже формат коротких видео, где наглядно показывается применение формул, как это выглядит на графике и что означает. Абсолютно незаменим для подготовки собственных лекций, очень удачные идеи по визуализации сложных концептов. Стиль изложения более строгий, без забавных фразочек, но все равно максимально понятно.

Если что-то забыла из хороших материалов, пишите комментарии, буду стараться держать подборку лучших книг и курсов всегда обновленной!

#recommendation

BY Статистика и R в науке и аналитике


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/stats_for_science/73

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information.
from us


Telegram Статистика и R в науке и аналитике
FROM American