Доказательства всегда в некотором смысле "конструктивны": они дают "алгоритм", просто не все шаги можно быстро проделать на практике. (шаги, связанные с аксиомой выбора, например). Интересно расписать такой план действий. Вот как распознать экзотическую сферу? (в соответствии с вычислением количества гладких структур на сферах, по Керверу-Милнору)
Входные данные: гладкое n-мерное многообразие Σ, гомеоморфное стандартной сфере. Диффеоморфно ли оно стандартной сфере?
Шаг 1: вкладываем Σ в R^{N+n} при N > n.
Шаг 2: строим нормальное оснащение на Σ, то есть N линейно независимых векторных полей на Σ, перпендикулярных поверхности [Нетривиальный факт: такое оснащение существует. Его можно строить через теорию препятствий; препятствие ровно одно, и оно всегда оказывается равно нулю.] Мы получили оснащённое подмногообразие коразмерности N.
Шаг 3: проверяем, существует ли оснащённый кобордизм между подмногообразием Σ (с нашим нормальным оснащением) и стандартной сферой S^n, стандартно вложенной в R^{N+n} (возможно, с нетривиальным нормальным оснащением). [На другом языке: по Понтрягину-Тому, нашему нормально оснащённому подмногообразию соответствует отображение S^{N+n} -> S^N, то есть элемент в n-ой стабильной гомотопической группе сфер. Этот элемент либо лежит в образе J-гомоморфизма (т.е. кратен некоторому явному элементу, связанному с ортогональной группой), либо не лежит. Ещё одна точка зрения: перебираем всевозможные оснащения на Σ и проверяем, будет ли хоть одно из них оснащённо кобордантно нулю].
Если такого кобордизма нет — успех, наша сфера экзотическая. Пусть такой кобордизм есть. Это значит: можно взять оснащённую связную сумму Σ и сферы так, что получится оснащённое многообразие, кобордантное нулю. Итог: получили оснащённое многообразие P, такое что ∂P=Σ. [Оснащение на Σ теперь не такое, как раньше, но оно нас больше не интересует.]
Шаг 4: несколько вариантов в зависимости от n. а) n чётно. Тогда сфера стандартная. б) n=4k+1, но не 13,29,61,125. Тогда сфера стандартная. в) n=13,29,61 или 125. Тогда надо посчитать инвариант Кервера многообразия P (то есть Арф-инвариант квадратичной формы на H^{2k+1}(P;Z/2), которая возникает из умножения в когомологиях). Если Арф-инвариант нулевой — сфера стандартная, иначе экзотическая. [в пункте б) тоже надо бы посчитать инвариант Кервера. Но, если верить Хиллу—Хопкинсу—Рэвенелу, он равен нулю.] г) n=4k-1. Тогда надо посчитать сигнатуру многообразия P (то есть сигнатуру квадратичной формы на H^{2k}(P;Q), которая возникает из умножения в когомологиях). Если сигнатура делится на некоторое явно выписываемое число, кратное числителю n-ого числа Бернулли — сфера стандартная, иначе экзотическая.
...интересно, можно ли как-нибудь переставить шаги (сначала разобраться с сигнатурой/арф-инвариантом, а потом уже решать гомотопическую задачу).
P. S. Кстати, Милнор строил первые экзотические сферы в размерности n=7. Там J-гомоморфизм сюръективен, поэтому Шаг 3 можно "пропустить": кобордизм всегда существует. (На самом деле пропускать нельзя: на Шаге 4 надо считать сигнатуру заклеивающей плёнки, построенной на Шаге 3.) Сферы Милнора — это тотальные пространства расслоений S^3 -> Σ -> S^4. С шагом 3 у Милнора не было проблем, многообразия P — это тотальные пространства ассоциированных расслоений D^4 -> P -> S^4.
Доказательства всегда в некотором смысле "конструктивны": они дают "алгоритм", просто не все шаги можно быстро проделать на практике. (шаги, связанные с аксиомой выбора, например). Интересно расписать такой план действий. Вот как распознать экзотическую сферу? (в соответствии с вычислением количества гладких структур на сферах, по Керверу-Милнору)
Входные данные: гладкое n-мерное многообразие Σ, гомеоморфное стандартной сфере. Диффеоморфно ли оно стандартной сфере?
Шаг 1: вкладываем Σ в R^{N+n} при N > n.
Шаг 2: строим нормальное оснащение на Σ, то есть N линейно независимых векторных полей на Σ, перпендикулярных поверхности [Нетривиальный факт: такое оснащение существует. Его можно строить через теорию препятствий; препятствие ровно одно, и оно всегда оказывается равно нулю.] Мы получили оснащённое подмногообразие коразмерности N.
Шаг 3: проверяем, существует ли оснащённый кобордизм между подмногообразием Σ (с нашим нормальным оснащением) и стандартной сферой S^n, стандартно вложенной в R^{N+n} (возможно, с нетривиальным нормальным оснащением). [На другом языке: по Понтрягину-Тому, нашему нормально оснащённому подмногообразию соответствует отображение S^{N+n} -> S^N, то есть элемент в n-ой стабильной гомотопической группе сфер. Этот элемент либо лежит в образе J-гомоморфизма (т.е. кратен некоторому явному элементу, связанному с ортогональной группой), либо не лежит. Ещё одна точка зрения: перебираем всевозможные оснащения на Σ и проверяем, будет ли хоть одно из них оснащённо кобордантно нулю].
Если такого кобордизма нет — успех, наша сфера экзотическая. Пусть такой кобордизм есть. Это значит: можно взять оснащённую связную сумму Σ и сферы так, что получится оснащённое многообразие, кобордантное нулю. Итог: получили оснащённое многообразие P, такое что ∂P=Σ. [Оснащение на Σ теперь не такое, как раньше, но оно нас больше не интересует.]
Шаг 4: несколько вариантов в зависимости от n. а) n чётно. Тогда сфера стандартная. б) n=4k+1, но не 13,29,61,125. Тогда сфера стандартная. в) n=13,29,61 или 125. Тогда надо посчитать инвариант Кервера многообразия P (то есть Арф-инвариант квадратичной формы на H^{2k+1}(P;Z/2), которая возникает из умножения в когомологиях). Если Арф-инвариант нулевой — сфера стандартная, иначе экзотическая. [в пункте б) тоже надо бы посчитать инвариант Кервера. Но, если верить Хиллу—Хопкинсу—Рэвенелу, он равен нулю.] г) n=4k-1. Тогда надо посчитать сигнатуру многообразия P (то есть сигнатуру квадратичной формы на H^{2k}(P;Q), которая возникает из умножения в когомологиях). Если сигнатура делится на некоторое явно выписываемое число, кратное числителю n-ого числа Бернулли — сфера стандартная, иначе экзотическая.
...интересно, можно ли как-нибудь переставить шаги (сначала разобраться с сигнатурой/арф-инвариантом, а потом уже решать гомотопическую задачу).
P. S. Кстати, Милнор строил первые экзотические сферы в размерности n=7. Там J-гомоморфизм сюръективен, поэтому Шаг 3 можно "пропустить": кобордизм всегда существует. (На самом деле пропускать нельзя: на Шаге 4 надо считать сигнатуру заклеивающей плёнки, построенной на Шаге 3.) Сферы Милнора — это тотальные пространства расслоений S^3 -> Σ -> S^4. С шагом 3 у Милнора не было проблем, многообразия P — это тотальные пространства ассоциированных расслоений D^4 -> P -> S^4.
BY сладко стянул
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%.
from us