Telegram Group Search
Как анализ данных предсказывает успех художника?

Портрет «Мужчина в золотом шлеме», который считался считался жемчужиной Берлинской картинной галереи, долгое время приписывали Рембрандту. Когда выяснилось, что он написан кем-то другим, стоимость картины снизилась в разы — как и поток туристов, желающих на нее посмотреть.

Это показательная история о том, что на ценность картины влияют факторы, не связанные с ее художественными достоинствами напрямую. Например, имя автора. Или престиж художественного направления, в котором этот автор работал. Или даже просто попадание в престижный музей.

На основе данных о 767 473 выставках и 127 208 аукционах исследователи построили сеть из 16002 галерей и 7568 музеев и выявили большое и плотно связанное сообщество музеев, которые имеют доступ к богатейшим коллекциями и активно обмениваются ими друг с другом. Изучив данные из 143 стран за 36 лет, ученые выдвинули гипотезу о том, что предопределяет успех художника.

Анализ данных показал, например, что попадание в престижный музей на раннем этапе карьеры с большой вероятностью определит дальнейшую карьеру творца. Работы тех авторов, которые с самого начала выставлялись в престижных местах, продаются в среднем в 4.7 раз чаще и стоят в 5.2 раз дороже, чем у тех, кто изначально оказался в непрестижных музеях и галереях. Более того, из тех художников, кто начинал выставляться в малопрестижных местах, лишь чуть больше 10% пробились в престижные музеи к концу жизни.

Подробнее об исследовании можете прочитать в нашей статье, а в комментариях предлагаем вам поделиться мнениями о том, где здесь причина, а где – следствие. Это престижные музеи хорошо умеют отбирать талантливых художников? Или талантливыми признаются те художники, которые были отобраны престижными музеями?

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Достоевский и цифровые технологии

Сегодня День рождения Федора Михайловича Достоевского. В этот день мы предлагаем вспомнить три материала «Системного Блока»: о судьбе Достоевского в школьных списках чтения, о том, как мы обучали нейросеть генерировать тексты в его стиле и о самых частых словах в его произведениях.

Достоевский и школьная программа


Недавно мы рассказывали, что только 16 произведений встречались в 90% всех советских и современных программ. Ни одного текста Достоевского среди них нет.

Хотя сегодня представить список чтения без «Преступления и наказания» может быть сложно, несколько поколений советских школьников его творчество не изучали. Из-за резко консервативных антиреволюционных взглядов (вспомните роман «Бесы» или публицистический цикл «Дневник писателя») Достоевского исключили из программы в конце 1930-х и вернули только в 1967. 

Подробнее о Достоевском и других писателях в школьной программе узнаете из нашего спецпроекта.

Достоевский и языковая модель

Для туторила по fine-tuning (способу улучшить предварительно обученную модель, которая уже имеет некоторые знания, путем небольших корректировок) мы выбрали маленькую версию русскоязычной модели ruGPT3 и готовый корпус произведений Достоевского. Подстраиваясь под стиль писателя, модель сгенерировала, например, фразу: «Кофею, а? Нет-с. Не надо; да и не нужно…».

Узнать о дообучении нейросетей и этом эксперименте больше, можно здесь.

Достоевский, Россия, женщины и дети

Не обошелся без Достоевского и двухчастный гайд «Системного Блока» по Voyant Tools. Этот инструмент помогает, например, с поиском коллокаций (слов, которые чаще всего встречаются рядом с заданным). По корпусу Достоевского, например, мы определили, что в его прозе Россия обычно рассматривается вне контекста внешней политики, в отличие от его публицистики. А ещё выяснили, кто встречается в текстах писателя чаще — ребенок, женщина или старик (спойлер: ребенок!).

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Языковые модели упёрлись в потолок, AlphaFold3 в открытом доступе, новые LLM для генерации кода

Рассказываем, что произошло в мире ИИ за последнее время.

ИИ-лаборатории ищут новые пути развития

Сотрудники компаний, занимающихся разработкой LLM, таких как OpenAI и Anthropic, отмечают, что существующий метод улучшения моделей перестал приносить значительные результаты. До недавнего времени качество языковых моделей повышалось за счёт увеличения вычислительных ресурсов, направленных на рост их размеров (размер GPT вырос в 1000 раз за пять лет) и объёмов данных для обучения.

При этом улучшение моделей предсказуемо зависит от объёма использованных ресурсов. Однако сейчас компании столкнулись с тем, что дополнительные затраты на ресурсы больше не приводят к существенным улучшениям.

Недавно OpenAI представила модель o1 с принципиально другой схемой работы: масштабирование вычислений происходит не во время обучения, а при её использовании. Модель o1 использует разный объём вычислений в зависимости от сложности пользовательского запроса.

Другие компании также ищут альтернативные выходы из ситуации. Об этом в том числе заявил бывший топ-исследователь OpenAI Илья Суцкевер, основавший свою компанию Safe Super Intelligence Inc.

AlphaFold3 стала доступна для исследователей


Лаборатория Google DeepMind опубликовала модель AlphaFold3 в открытый доступ. Ранее доступ к модели осуществлялся через API с ограничением в 20 запросов в день. Теперь исследователи могут запускать и использовать её самостоятельно. Лицензия модели запрещает коммерческое использование.

AlphaFold3 — третья версия системы для предсказания трёхмерной структуры белков. За разработку AlphaFold исследователи Google DeepMind получили в этом году нобелевскую премию по химии.

Qwen2.5-Coder — новая лучшая открытая модель для кода


Компания Alibaba Group (владелица AliExpress, Taobao и ряда других площадок) выпустила серию моделей, генерирующих программный код, Qwen2.5-Coder.

Модель доступна в четырёх размерах — 0.5 / 3 / 14 / 32 млрд параметров. Самая большая версия стала лидером среди открытых моделей по качеству написания кода и сравнялась с GPT-4o. Модель поддерживает 40 языков программирования. Все версии, кроме модели с 3 млрд параметров, доступны для использования в исследовательских и коммерческих целях.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Смерть на улице: как бездомность сокращает жизнь и что об этом знает статистика

Потеря человеком постоянного места жительства приводит к невозможности получать постоянную и полноценную медицинскую помощь. В результате бездомные теряют 19 лет жизни, умирая намного раньше остальных россиян. «Системный Блок» вместе с благотворительной организацией «Ночлежка» @nochlezhka, Благотворительной больницей @charityhospital и платформой «Если быть точным» @tochno_st изучил данные о причинах смертности бездомных женщин и мужчин.

Мужчины и женщины


За 2023 год в России умерли 57,5 тыс. бездомных людей, 73% из которых — мужчины, 27% — женщины. Такая диспропорция объясняется тем, что мужчины чаще оказываются на улице. При этом «женщины чаще находятся в ситуации скрытой бездомности. Например, соглашаются на ужасные условия проживания хоть где-то. При этом им приходится терпеть неприятное отношение, физическое или сексуализированное насилие», — объясняет специалист «Ночлежки» по социальной работе Ксения Ершова.

Причины смерти

Как посчитали в «Если быть точным», бездомные чаще остальных россиян умирают от внешних причин (шанс умереть в 3,6 раза выше). Выше и риск смерти от инфекционных болезней и заболеваний пищеварения и дыхания. При этом 68% смертей от инфекционных и паразитарных заболеваний — это смерти от ВИЧ, ещё 24% — от туберкулеза, 4% — от гепатита.

Медицинская помощь

Бездомные люди, если у них нет документов (паспорт РФ и полис ОМС), могут получить бесплатно только экстренную медицинскую помощь. Лечить хронические болезни, которые часто развиваются у бездомных, без паспорта или регистрации затруднительно. По закону человек без документов может находиться в больнице до двух недель. Дальше, по усмотрению врача, его могут оставить в стационаре, но часто людей выписывают.

Подробнее о том, как проживание на улице сокращает жизнь, и о том, как «Ночлежка» и другие организации помогают бездомным, узнаете из полной версии материала.

Время чтения: 11 минут.


🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Советские учебники: возрождение в цифре

Согласно статистике «Яндекс Вордстат» интерес к советским учебникам стабильно сохраняется на протяжении всего учебного года и падает во время летних каникул. Значит ли это, что учителя или родители используют эту литературу? Зачем? Мы обратились к бесплатным ресурсам и проанализировали их: пользуясь рубрикатором или открытой статистикой, посмотрели предметный состав архивов, а также обратили внимание на комментарии составителей.

1️⃣ Библиотека Ушинского

Электронная библиотека «Школьные учебники» — основной ресурс старых оцифрованных учебников, где представлено 90 учебников, 101 исследование и 300 авторов. Все издания вычитаны и оцифрованы, так что пользователи могут свободно перемещаться по структуре издания и производить поиск по тексту. Особенно много здесь учебников по русскому, но встречаются и другие дисциплины – вплоть до церковнославянского.

2️⃣ Любительский цифровой архив советских учебников

Сайт «Советские учебники» — это самостоятельный ресурс, который поддерживается одним человеком. Здесь можно найти .pdf и .djvu версии не только учебников по языкам и математике, но и, например, по овощеводству, стенографии и… плаванию!

3️⃣ Цифровой музей советской эпохи

Учебникам посвящен целый раздел сайта «Советское время». В этом архиве, к примеру, есть книга «Физика и музыка» (1962 г.), в 11-й главе которой рассказывается о том, как сочиняют музыку «электронные композиторы» — кибернетические машины.

Кто занимается оцифровкой и публикацией?

Мы почитали обсуждение советских учебников в соцсетях и поговорили с авторами ресурсов и учителями. Оказалось, что большинство любительских ресурсов с учебниками в открытом доступе созданы энтузиастами, которые считают советское образование лучшим в мире и хотят сохранить наследие этой эпохи.

Узнать подробнее об отношении родителей и учителей к советским учебникам и их цифровым версиям, а также о других ресурсах, где можно найти нужные пособия, можно из полной версии материала.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Антипапа, телеграф и RAR-архив: долгая жизнь кодовых книг

Как связан «Великий шифр» 17 века и формат архивирования RAR? Кодовые книги — инструмент преобразования информации, который появился еще в Средневековье для шифрования, достиг расцвета в эпоху телеграфа, обретя новую функцию — сжатия информации. Разбираемся с алгоритмами и кодовыми книгами вместе с Музеем криптографии.

📕 Как устроена кодовая книга?

Кодовая книга — своеобразный словарь, в котором собраны часто встречающиеся или тематически важные слова и выражения, а также отдельные буквы, цифры и символы. При шифровании все или часть слов сообщения заменяются на соответствующие им в книге кодовые слова или группы. Вместо книг могли использоваться кодовые таблицы — меньшие по объему и содержащие обозначения ключевых имен собственных (политических фигур, городов и т.п.).

📗 Какие кодовые книги были в средневековье?

Самый ранний известный пример — система, разработанная Габриэлем де Лавинде для Антипапы Клемента VII в 1379 году, а самый известный – «Великий шифр» Антуана Россиньоля. В нём было порядка шестисот кодовых групп для обозначения отдельных букв и слогов, а также слов и имен собственных. Он использовался вплоть до начала XIX века и считался невзламываемым до 1893 года.

📘 Что изменил телеграф?

С появлением телеграфа криптография перестала служить только целям секретности — чтобы хранить государственные, военные и коммерческие тайны. Теперь она понадобилась простым гражданам — для приватности. Правда, телеграфные кодовые книги обычно печатались большими тиражами и были доступны в широкой продаже и иногда использование шифрования жестко контролировалось государством. Но у этого шифра была и другая функция — сжатие объёма сообщений. Позже правила использования кодовых книг и тарификации закодированных и зашифрованных сообщений обсуждались и принимались на отдельных Телеграфных конференциях.

📙 Что стало с кодовыми книгами?

С развитием систем телекоммуникации телеграфная связь подешевела, и кодовые книги потеряли свою актуальность. А для защиты приватности появились более надежные механические и электромеханические шифраторы. Однако у кодовых книг осталось огромное наследие. Например, метод сжатия RAR. Данные разбиваются на небольшие блоки — «слова», и для наиболее частотных «слов» назначаются более короткие кодовые обозначения.

Узнать о связи «Великого шифра» с «Человеком в железной маске», взломе телеграммы, повлиявшем на ход мировой истории, и послании про семьдесят обезьян можно из полной версии текста.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
ЕГЭ, ОГЭ и современные тексты: школьный канон сегодня

В рамках дата-исследования «Системного Блока» о школьном каноне, мы уже рассказывали о судьбе русских и зарубежных авторов, и даже текстах народов СССР в школьной программе. Сегодня фокусируемся на современных произведениях и экзаменах, которые определяют содержание уроков литературы.

🌞 Кого читают?

С 2016 года в списки произведений вошел большой пласт современной литературы: школьникам предлагалось изучить тексты Василия Аксенова, Светланы Алексиевич, Бориса Акунина*, Дмитрия Быкова*, Виктора Пелевина, Мариам Петросян, Людмилы Петрушевской, Захара Прилепина, Людмилы Улицкой*. После 2023 года из этого списка остался лишь Прилепин.

🔫 «Застывает» ли школьный канон?

Мы поговорили с Михаилом Павловцом, доктором филологических наук и преподавателем лицея НИУ ВШЭ, чтобы понять, как меняется список чтения сегодня. Согласно его комментарию, сейчас мы «переживаем этап “замораживания” канона: в основном если в него и вводятся какие-то произведения — они в него возвращаются из позднесоветских программ по литературе (вроде романов Островского или Фадеева), а редкие исключения — как публицистическая книга митрополита Тихона (Шевкунова) — безусловно скорее историософский манифест, чем художественное или серьезное научное произведение».

🪓 Как связаны ЕГЭ и школьная программа?

Кодификаторы ЕГЭ содержат обязательный минимум, необходимый для сдачи экзамена. Эти нормативные документы меняются редко, однако их состав отличается от примерных программ по литературе. Например, в 2006 году там не было Ломоносова, Карамзина, Крылова и многих других авторов. К 2009 году это изменилось, но затем кодификатор не менялся до 2021.

В 2021 году программа ЕГЭ стала объемнее (в первую очередь за счет своей необязательной части), в 2022 – продолжила расширяться, а в 2024 снова обновилась. В этот раз в неё вошли «Что делать?» Николая Чернышевского, «Как закалялась сталь» Николая Островского и историко-публицистическое исследование митрополита Тихона (Шевкунова) «Гибель империи. Российский урок».

Узнать больше об этих и других изменениях в школьной программе за последние 100 лет, а также о том, когда в список для ОГЭ вошли «Поучение» Владимира Мономаха и «Домострой», можно из полной версии материала.

🤖 «Системный Блокъ» @sysblok

*признаны иностранными агентами в РФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Утечка доступа к Sora, открытые аналоги OpenAI o1, протокол общения между LLM и приложениями от Anthropic

Рассказываем, что произошло в мире ИИ за последние две недели.

Утечка доступа к Sora

Группа художников с ранним доступом к видеогенератору Sora выступила против условий тестирования OpenAI и опубликовала программу для работы с нейросетью.

Согласно правилам OpenAI, художники получают доступ к Sora для исследования её возможностей, поиска уязвимостей (включая генерацию нежелательного контента) и предоставления обратной связи разработчикам.

В открытом письме участники программы критикуют многомиллиардную компанию за использование их труда без справедливой компенсации. Авторы письма не против использования ИИ в искусстве, но не согласны с подходом OpenAI. Художники также опубликовали примеры работ Sora и программу с доступом к закрытому API, позволяющую любому экспериментировать с нейросетью.

В ответ OpenAI через три часа отключила доступ всем участникам тестирования. 

Нейросеть Sora была представлена ещё в марте. Затем несколько компаний представили аналоги, в том числе и открытые для использования, на которые ссылаются авторы письма.

Рассуждающие модели от китайских лабораторий

Две китайские лаборатории выпустили LLM, обученные генерировать цепочки размышлений перед ответом. Подобную технику улучшения качества ответа ранее представила компания OpenAI вместе с моделями o1.

Первая модель DeepSeek R1-Lite от лаборатории DeepSeek опережает o1-preview в задачах по математике и программированию, однако хуже нее в задачах на логические рассуждения. Качество ответов модели от DeepSeek растет с увеличением длины рассуждений (её можно варьировать). R1-Lite можно попробовать совершенно бесплатно. Релиз кода и весов модели, а также технический отчёт, по словам лаборатории, должен произойти в ближайшее время.

Вторая модель, QwQ-32B-Preview от лаборатории Qwen, по качеству также сопоставима с моделями o1 и доступна всем желающим. Она находится на ранней стадии разработки, и поэтому у неё есть ограничения и несовершенства.

Открытые данные о методах обучения рассуждающих моделей и доступ к ним позволят open-source сообществу сократить отставание от закрытых коммерческих компаний.

Открытый протокол для общения между LLM и пользовательскими приложениями

Компания Anthropic представила Model Context Protocol (MCP) — открытый протокол, позволяющий языковым моделям взаимодействовать с данными и функциями сторонних приложений. MCP упрощает интеграцию языковых моделей в различные продукты.

Протокол работает по классической клиент-серверной архитектуре, где клиентом выступает приложение с языковой моделью, а MCP-сервер обеспечивает доступ к внешним данным и функциям.

Рассмотрим пример: разработчики приложения для хранения заметок хотят дать пользователям возможность анализировать свои записи через приложение ChatGPT. Пользователь пишет: «Сделай выжимку из моих заметок о планируемом отпуске». И чат-бот обобщает заметки. Для этого разработчики создают MCP-сервер — программу, которая обрабатывает запросы от приложения ChatGPT и передаёт необходимые данные из базы приложения заметок. В контексте примера запрос включает идентификатор пользователя и тип запрашиваемой информации (заметки). Полученные от сервера заметки позволяют ChatGPT сгенерировать выжимку.

MСP-сервер также может предоставлять доступ к функциям приложения. Например, разрешить добавление новых заметок в аккаунт. Если пользователь просит ChatGPT сохранить полученную выжимку как новую заметку, бот запрашивает у сервера список доступных функций, находит нужную и отправляет запрос с её названием и параметрами (заголовком и содержанием заметки). Получив этот запрос, сервер создаёт новую заметку с указанными данными.

Вместе со спецификацией протокола Anthropic выложила код MCP-серверов для популярных приложений (Github, Google Drive, Slack, Google Maps и других), которые позволяют интегрировать их с приложением для общения с Claude (моделью от Anthropic), а также сервер для взаимодействия с локальной файловой системой пользователя.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Ресурсы для цифровых стиховедов: поэтические корпуса

Сегодня двойной поэтический день рождения: 5 декабря с разницей в 17 лет родились два выдающихся русских поэта — сначала Фёдор Тютчев в 1803 году, а затем Афанасий Фет в 1820-м. В связи с такой важной для поэзии датой предлагаем вспомнить, какие поэтические корпуса будут полезны тем, кто хочет отличать Фета от Тютчева исследовать поэтическое наследие — русское и не только.

Поэтический подкорпус НКРЯ

Первый в истории поэтический корпус, доступный с 2006 года, сегодня он насчитывает 101 521 текст. В стихотворениях размечены метр, строфика и другие параметры, указаны автор, дата создания и жанры. По всем этим признакам можно искать информацию и задавать подкорпус

Башкирский поэтический корпус

Вторым поэтическим корпусом в мире стал Башкирский, созданный в октябре 2013 года Борисом Ореховым. Коллекция текстов корпуса состоит из произведений 103 башкирских поэтов XX и начала XXI века. Благодаря нему можно узнать не только о башкирском стихе, но и о башкирском языке в целом. Корпус поддерживает два вида поиска — лексический и грамматический, можно искать как само слово, так и формы по определенным грамматическим признакам.

Персидский поэтический корпус

Персидский поэтический корпус был опубликован весной 2020 года. Он содержит тексты классической персидской поэзии IX-XVII веков в объеме 4,3 млн. словоупотреблений (это 16 842 произведения или 330 723 бейта — так называется минимальная строфическая единица тюркской и персидской поэзии).

Мультиязычный корпус поэзии PoeTree

Проект PoeTree, опубликованный в 2023 году, включает более 330 000 стихотворений на десяти языках (чешский, английский, французский, немецкий, венгерский, итальянский, португальский, русский, словенский и испанский). Каждый корпус был очищен от дубликатов, снабжен морфосинтаксической разметкой в формате Universal Dependencies и снабжен метаданными. Тексты и метаднные доступны в виде унифицированных JSON-файлов.
 
Поэтические корпуса — это культурное достояние и важный источник, содержащий информацию о национальной поэзии и языке конкретного временного периода. Если вы использовали для своих исследований (или других целей?) эти и другие поэтические корпуса, пожалуйста, расскажите о них в комментариях!

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Позвони мне, позвони: как мобильные данные помогают изучать неравенство

У социального неравенства в разных странах есть множество причин и особенностей. Как есть и множество инструментов — в том числе цифровых — для изучения этой проблемы. Ученые из Сингапура, например, измерили городскую сегрегацию с помощью мобильных данных. Рассказываем о том, как социально-экономические группы оказались разделены не только в физическом, но и виртуальном пространстве города.

Кратко: о чём статья?

Обычно сегрегацию измеряют по месту жительства (residential segregation), высчитывая различные индексы сегрегации: самые популярные это индекс непохожести (index of dissimilarity), индекс энтропии (Theil’s entropy index) и индекс изоляции (isolation index). Для этого используют перепись населения и социально-экономические показатели, такие как уровень дохода.

Однако исследователи из MIT решили учесть не только место жительства, но и те места, которые люди посещают ежедневно, обратившись к мобильным данным. Они разделили город на более и менее дорогие ареалы вокруг каждого пользователя мобильной связи и распределили людей по категориям в зависимости от их места жительства: сделали шкалу из статусных кластеров. После этого ученые подсчитали индекс коммуникационной сегрегации для каждого пользователя сотовой сети. 

Это позволило убедиться, что люди с самым лучшим социально-экономическим положением являются самой сегрегированной частью населения и общаются в основном с себе подобными.
 
Помимо этого ученые измерили индекс физической сегрегации, который в зависимости от времени суток показывает, насколько активно человек взаимодействует с людьми из других статусных кластеров (спойлер: центр города становится более интегрированным во время обеда).

Узнать больше о городской сегрегаци, результатах исследования и посмотреть на (очень эффектную) карту коммуникаций Сингапура можно в статье на сайте.

Время чтения: 6,5 минут.
ChatGPT — 2 года!

Два года назад состоялся релиз ChatGPT — модели, о которой вы точно слышали, даже если не интересуетесь нейросетями и никогда не читали наши дайджесты новостей из мира искусственного интеллекта. А если всё-таки не слышали — загляните в наш каталог, где мы ультракратко просуммировали главную информацию. Вспоминаем наши материалы о чат-боте и разбираемся, как он изменил нашу жизнь (если вообще изменил).

ChatGPT и писатели


В 2023 году мы провели эксперимент, чтобы разобраться, как и чем будут различаться тексты ChatGPT и реального писателя по одному запросу (спойлер: тексты модели намного более консервативны). А ещё выяснили, что нейросети неплохо подражают стилю разных авторов, но допускают грамматические ошибки.

Пока мы писали эти материалы и общались с нейросетью, японская писательница Риэ Кудан не только написала роман с помощью ChatGPT, но и получила за него престижную литературную премию. Если вы тоже так хотите, мы собрали для вас инструкцию!

ChatGPT и фантазии

Ещё одна проблема ChatGPT – галлюцинации. Модель легко приписывает Толстому роман «Отцы и дети» и убеждает пользователя, что в фильме «Любовь и голуби» сыграла Эмили Блант. И хотя на английском бот отвечает чуть точнее, ошибок и выдумок всё равно много.

ChatGPT и новые версии

Модель периодически обновляется, но пользователи не всегда остаются довольны новыми версиями. О том, как улучшения показателей в некоторых типах задач могут помешать качественному выполнению привычных функций, мы рассказали здесь.


ChatGPT и вы

А что о ChatGPT думаете вы? Пользуетесь ли им ежедневно или никогда не взаимодействовали с нейросетью? Голосуйте в нашем опросе или расскажите о своем опыте работы с чат-ботом в комментариях под этим постом!

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Новый журнал про цифровые гуманитарные науки на русском языке

В Институте русской литературы РАН будет дважды в год выходить журнал «Цифровые гуманитарные исследования». В ноябре 2024 года вышел его первый номер. Кроме научных статей, в журнале будут публиковать рецензии, обзоры конференций и дискуссионные статьи.

Исследования, представленные в первом номере, посвящены стилометрии древнегреческих текстов, поэтике романа «Что делать?» и цифровым коллекциям культурно-значимых данных. В номере также опубликована дискуссионная статья Бориса Орехова и Андрея Володина, которая является ответом на «некролог» российским Digital Humanities от Даниила Скоринкина (Digital Humanities in Russia Was Forever, Until It Was No More: The Story of Russian Digital Humanities in 2011–2022), опубликованный весной 2023 года.

Кроме того, журнал акцентирует внимание на ключевых событиях и значимых публикациях в области цифровых гуманитарных исследований. Среди материалов — статья Динары Гагариной с обзором круглого стола «Digital Humanities в Центральной Азии» и рецензия Дарьи Артемьевой на монографию Джулии Томпсон Кляйн, где освещается проблема разграничения областей знания в Digital Humanities.

Учредителем и издателем журнала является Институт русской литературы (Пушкинский Дом) РАН. Его главный редактор — Борис Орехов. Ознакомиться с первым номером, как и с последующими, можно бесплатно на сайте Пушкинского Дома. Там же можно узнать про условия отправки материалов.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Косинусная близость: как компьютер сравнивает объекты

Рассказываем, как онлайн-кинотеатры определяют, какой фильм вам порекомендовать, маркетплейсы — какой похожий товар предложить, а интернет-поисковики находят темы, которые отвечают теме запроса. И всё это — с помощью косинуса угла между векторами.

Кратко: о чем статья?

Прежде чем сравнивать объекты, компьютер должен представить их в виде векторов — упорядоченных наборов чисел, которые формализуют свойства каждого объекта. Каждое число вектора характеризует какой-то признак объекта, например, цвет и размер товара, тональность текста, жанр и длительность фильма. Чем больше признаков у объекта, тем больше чисел в векторе (эти числа называют координатами вектора).

Между двумя векторами можно измерять расстояние и угол. Чтобы не измерять угол в градусах, его удобнее выражать через косинус. Косинус — это одна из тригонометрических функций, которая на вход принимает угол и сопоставляет ему число из диапазона от -1 до 1. Чем меньше угол между векторами, тем более схожи соответствующие объекты, и наоборот. Поэтому косинус между векторами также называют косинусной близостью.

Например, объекты, у которых соответствующие им векторы направлены одинаково (угол между ними 0 градусов), имеют с точки зрения косинуса максимальную близость, равную единице. A объекты, векторы которых указывают в противоположные направления (угол между ними 180 градусов), максимально удалены — у них косинус равен -1. Так, если на плоскости изобразить векторы, соответствующие трем рюкзакам (при этом их объем и количество отделений будут координатами по горизонтали и вертикали соответственно), то при подсчете косинусной близости между ними выяснится, что рюкзак объемом 2 литра с 6 отделениями более схож с рюкзаком объемом 1 литр и с 2 отделениями, нежели чем с рюкзаком, объем которого — 4 литра, а количество отделений — 2 штуки.

Чтобы узнать о том, как рассчитать косинус с помощью математических формул или компьютера, а также найти ссылку на проект в Google Colab, где вы можете попробовать рассчитать косинусную близость между разными словами, читайте полную версию статьи.

Время чтения: 7 минут

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
A real area: что такое ареальная типология и как её изучают цифровыми методами

В мире почти 7000 языков, и они очень разные. Лингвисты-типологи изучают, насколько языки мира похожи друг на друга и какие лингвистические явления в них вообще встречаются. Поскольку делать это вручную —  задача трудоёмкая и полная неоднозначностей, на помощь исследователям приходят вычислительные методы. Рассказываем подробнее.

1️⃣ Какой подход нужно выбрать лингвисту, желающему описать всё многообразие языков?

Языковые явления можно разбить на условные уровни: морфологический, синтаксический и другие. Наиболее осязаемый из них — фонетический, поскольку звуки удобно описывать в биологических и акустических терминах. Уже на этом уровне мы можем обнаружить разительные отличия между языками мира. Скажем, в языках Южной Африки присутствуют особые звуки — кликсы, «щёлкающие» звуки (например, такие), которых нет в большинстве других языков.

2️⃣ Чем занимаются ареальные типологи?

Эти лингвисты ищут языковые ареалы — группы расположенных рядом языков, которые обладают схожими явлениями на различных уровнях языка. Эти ареалы выделяются по совокупности признаков, а не одному конкретному (скажем, только наличия кликс будет недостаточно). Из-за этого вопросы о границах и количестве общих черт, которое необходимо, чтобы точно говорить об образовании ареала, нередко становятся предметами дискуссий.

3️⃣ Как что-то посчитать в ареальной типологии?

Исследователи строят общую картину на основе данных, чтобы затем было понятнее, в какие аспекты стоит углубиться (это сравнимо с дальним чтением в Digital Humanities). Информацию можно представить в форме вектора: составить список вопросов о языке, на которые можно ответить «да» или «нет», чтобы заменить ответы на 1 и 0 соответственно. К полученным векторам несложно применить алгоритмы кластеризации.

4️⃣ Как помогает NLP?

Некоторые исследователи обращаются к методам Natural Language Processing (NLP, обработка естественного языка), чтобы ускорить процесс создания базы и покрыть большую выборку языков. Существует много техник извлечения информации из текста, так называемого семантического парсинга. 

Разумеется, алгоритмы не всегда будут идеальны, но они упрощают решение многих задач для ученых. Об одной из таких задач, а также о морфологической типологии и карте World Atlas of Linguistic Structures мы подробнее рассказали в новом материале.

Время чтения: 15 минут.


🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Новинки от OpenAI, новая LLM от Google, модель для генерации изображений от лаборатории Маска

Рассказываем, что произошло в мире ИИ за последнее время.

Адвент-календарь от OpenAI

С 5 декабря OpenAI ежедневно по будням анонсирует новые разработки и обновления своих продуктов.

Первым стал анонс подписки ChatGPT Pro стоимостью $200 в месяц. Она предоставляет неограниченный доступ ко всем языковым моделям компании, включая o1-pro (версия модели o1, которая рассуждает больше обычной версии), а также содержит все опции базовой подписки ChatGPT Plus за $20 в месяц.

Наиболее значимым событием стал публичный запуск Sora — модели для генерации видео (мы писали о ней ранее). Пользователи с подпиской Plus могут создавать до 50 видео в разрешении 480p или меньшее количество в 720p. Владельцам Pro-подписки доступно в 10 раз больше генераций.

Стала доступна интеграция ChatGPT с Apple Intelligence — системой искусственного интеллекта в последней версии iOS. Когда встроенный ассистент Siri не может ответить на запрос пользователя, система предлагает перенаправить его в ChatGPT.

OpenAI также представила возможность дообучать модель o1 на собственных данных, пока эта функция доступна ограниченному кругу пользователей.

Остальные обновления касаются сервисов компании:

- представлен новый режим Canvas для эффективной совместной работы над текстовыми документами и программным кодом. ChatGPT может предлагать правки, изменять стиль текста, комментировать код и помогать находить ошибки;

- в классическом интерфейсе ChatGPT добавлена возможность создавать проекты (папки) для группировки тематически связанных диалогов с общим контекстом;

- добавлена поддержка работы с видеопотоками: пользователи могут транслировать видео с камеры телефона и одновременно обсуждать происходящее с GPT голосом.

Крупное обновление языковой модели Google

Корпорация Google представила обновлённую версию своей языковой модели — Gemini 2 Flash. По результатам основных тестов новая модель превосходит предыдущую флагманскую версию и работает в полтора раза быстрее.

Gemini 2 Flash способна не только обрабатывать аудио, видео и изображения, но и генерировать их в качестве ответа. Например, при игре в крестики-нолики пользователь может отправить фотографию своего хода, а нейросеть ответит, добавив свой ход прямо на полученное изображение, то есть ответом будет не текст, а изображение.

В обновлении особое внимание уделено развитию агентных способностей модели — возможности выполнять различные задачи в разных средах (например, забронировать столик в ресторане или работать с компьютерными программами). Gemini 2 Flash демонстрирует улучшенные навыки планирования действий и запоминания истории взаимодействий. Кроме того, модель может эффективно работать с внешними инструментами, такими как Google Поиск и Google Maps.

Нейросеть для генерации изображений от xAI

Лаборатория xAI, принадлежащая Илону Маску, представила новую модель Aurora для генерации изображений на основе текстовых описаний.

В отличие от существующих решений, таких как Midjourney, Stable Diffusion и DALL-E, Aurora использует принципиально иной подход к созданию изображений. Она работает подобно языковым моделям, в то время как механизм генерации других систем построен совершенно иначе: как именно, можно прочитать в нашем материале.

Благодаря схожести с языковыми моделями, Aurora может использовать все существующие методы их оптимизации, однако уже для ускорения генерации изображений. Кроме того, модель демонстрирует более высокое качество работы с текстом, особенно при редактировании существующих изображений на основе текстовых инструкций.

Aurora доступна для тестирования в социальной сети X, но только для пользователей из ограниченного числа стран.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Бешеный принтер 2020–2022: как плодятся «чрезвычайные» законы

Чрезвычайные события, такие как пандемия или военные действия, порождают ограничительные законы. При этом многие законодательные изменения, изначально принимавшиеся как «чрезвычайные», оказываются долгосрочными и становятся нормой. Рассказываем, как статистика законотворчества позволяет проследить за этим трендом на примере массива законопроектов, рассматривавшихся и принимавшихся Государственной Думой в период весенней сессии 2020, 2021 и 2022 гг.

Кратко: что выяснилось?

Первое, что мы увидели – повышение так называемой «законотворческой эффективности» парламента во время кризиса. При сравнительно одинаковом количестве внесённых на рассмотрение законопроектов увеличивается число принятых законов и скорость их рассмотрения.

Помимо тренда на ускорение законотворческого процесса в РФ, заметна «регионализация» — расширение полномочий глав субъектов РФ. Для преодоления чрезвычайных ситуаций также создаются отдельные координационные структуры внутри государственной машины.  Например, в период пандемии ключевым органомом принятия решений стал Координационный совет при Правительстве РФ, чьи решения определяли основные ограничительные меры.

Наконец, исследование показало, что структуры, создаваемые для «ручного контроля» за чрезвычайными ситуациями, стремятся к превращению в регулярно действующие. Для них окончание действия чрезвычайной ситуации означает их собственное исчезновение. 

Узнать подробнее о тенденциях, связанных с «чрезвычайными» законами последних лет, можно из полной версии статьи.

Время чтения: 6,5 минут


🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
От Роулинг до Лермонтова: как провести анализ тональности текста

Анализ тональности текста (Sentiment Analysis) — это процесс автоматического определения эмоциональной окраски содержания текста. Но как зафиксировать тонкие и динамичные изменения не в коммуникации, а в больших произведениях? Как формально визуализировать эмоциональное содержание текста, превратив его в график? Рассказываем в нашем новом материале!

📕 К истории сентимент-анализа

Первые задачи анализа тональности решались с использованием заранее размеченных словарей, например, таких как kartaslovsent, где каждому слову соответствовала определённая эмоциональная оценка. С развитием технологий нейронных сетей появились более точные методы, основанные на эмбеддингах. Современные модели используют предобученные нейросети-энкодеры, такие как BERT, которые способны учитывать контекст и взаимосвязь между словами.

📗 Гарри Поттер и кривая эмоциональной тональности

Эндрю Рейган и его коллеги из Вермонтского университета создали одну из первых работ, описывающих изменение эмоциональной тональности на практике. Их исследование было посвящено книге «Гарри Поттер и Дары Смерти», самая счастливая точка которой приходится на первую четверть книги.

📘 Герой нашего времени

Мы решили повторить эксперимент Рейгана, но на примере романа М. Ю. Лермонтова. Для этого мы обратились к нейросети RuBERT и разбили текст на атомарные единицы. В случае книг для этого лучше всего использовать предложения – они  достаточно маленькие по размеру, но выражают законченную мысль.

Высшей точкой нашей кривой эмоциональной тональности оказалась глава о княжне Мэри, а низшей – дуэль с Грушницким. Правда, путь к красивому графику оказался тернистым. 

Если вы хотите узнать о сложностях, с которыми мы столкнулись, визуализируя эмоции в тексте Лермонтова, или изучить, как меняется эмоциональная окраска в вашем любимом (или нелюбимом!) тексте, переходите к нашему гайду.

Время чтения: 13 минут.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Пробей крепостную стену: как понять науку через симуляторы

Хотите смоделировать процесс эволюции или работу человеческого глаза? Не можете разобраться в баллистике? Тогда воспользуйтесь интерактивным симулятором. Мы собрали самые интересные и рассказали, как они делают науку понятней и ближе.

👾 Что за симуляторы?

Интерактивные симуляторы — это цифровые инструменты, моделирующие реальные научные ситуации. Например, вы хотите провести эксперимент и увидеть, как двигаются молекулы и атомы, или какое воздействие на вещество оказывает тепло, но у вас нет лаборатории и инструментов. В таком случае используются виртуальные симуляторы. 

Интерактивные симуляторы возникли вместе с развитием систем электронного обучения. Со временем они стали доступны не только в виде программного обеспечения, но и в браузерах, а сегодня можно делиться ими в соцсетях и встраивать в собственные сайты.

🕺🏻 Травольтаж

Все желающие разобраться в физических законах могут изучить электростатику и электрическое напряжение в симуляторе «Травольтаж» (John Travoltage). Для этого совсем необязательно разбираться в физике — симуляторы очень понятны и наглядны, поэтому, играя, вы одновременно понимаете сложные вещи. В «Травольтаже», например, можно наэлектризовать об ковёр ногу Джона Траволты (отсюда и название: соединение английского voltage и фамилии актёра) и увидеть, как электрический заряд передается металлической дверной ручке.

🦎 Эволюция: 10,000

Если вас интересует вопрос, почему в ходе эволюции одни виды выжили, а другие нет, обратитесь к симулятору Evolution: 10,000, с помощью которого можно проследить эволюцию вымышленной популяции за 10 тыс. лет. После каждой тысячи лет ресурс будет сообщать о произошедших изменениях.

👁️ Наследственность: цвет глаз и ушные раковины

Чтобы узнать, почему у вас один цвет глаз, а у вашего знакомого другой, смоделируйте наследственность в симуляторе Heredity IV: Eye Color and Pinna. Вы можете тестировать один признак за раз или оба — цвет глаз и наличие ушной раковины. В последнем случае можно смоделировать дигибридное скрещивание.

О других симуляторах, которые помогают лучше понять физику, химию, биологию и другие науки — в том числе создавая собственные метательные аппараты и пробивая крепостные стены — мы рассказали в полной версии статьи.

Время чтения: 16 минут

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Возраст несчастья: когда он наступает?

В новом материале «Системный Блокъ» рассказывает о состоянии несчастья с опорой на исследование Unhappiness and age. Изучаем компоненты неблагополучия, исследуем график невзгод и, конечно, показываем статистику, которая поможет разобраться в особенностях этого состояния.

Кратко: о чем статья?


Несчастье — это особое состояние человека, которое противопоставляется состоянию счастья и считается в первую очередь проблемой, связанной с ментальным здоровьем. Исследователь по фамилии Бланчфлауэр вывел переменные несчастья, которые можно разделить на четыре группы: связанные с психическим здоровьем, социальным взаимодействием, физическим самочувствием и национальным благополучием.

Изучение этих факторов показало, что кривая неблагополучия всегда представляет собой холм с пиком в возрасте 45–54 лет в среднем. По всему миру люди 45–54 лет чаще других испытывают тревогу и проблемы со сном, начинают жаловаться на хронические боли. Во многих странах на этот же возраст приходится максимальное количество самоубийств и смертей от передозировки наркотическими веществами или злоупотребления алкоголем.

Исследование Unhappiness and age дополняет другую работу, Is happiness U-shaped everywhere?, про уровень счастья и его график. Оказалось, что кривые счастья и несчастья зеркально отражают друг друга. Их минимум и максимум приходятся на промежуток 45–50 лет соответственно.

Посмотреть на визуализацию статистики и увидеть, на какой возраст приходится пик счастья и в какой момент графики сходятся в одной точке, можно благодаря полной версии статьи.

Время чтения: 6,5 минут

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
2024/12/23 11:11:03
Back to Top
HTML Embed Code: