Telegram Group & Telegram Channel
DeepSeek moment

Нельзя ничего не сказать про DeepSeek. Эти ребята просто супер молодцы — так задизраптить всё поле мало кому удавалось. Ну OpenAI со своим ChatGPT, потом Цукерберг с Llama в опенсорсе, теперь вот DeepSeek.

DeepSeek сумели обучить модели хорошего качества по ценам на порядок ниже конкурентов.

Во-первых, DeepSeek-V3 (https://github.com/deepseek-ai/DeepSeek-V3), включает две модели DeepSeek-V3-Base и чат-версию DeepSeek-V3. Обе являются MoE с 671B параметров всего и 37B активных. Не для простых смертных модели, надо иметь неслабую multi-GPU конфигурацию что-то типа 8 H200 (но есть сжатые варианты от разных товарищей). По качеству где-то уровня GPT-4o 0513 и Claude-3.5-Sonnet-1022 и выше LLaMA-3.1 405B.

Есть разные оценки, сколько стоило обучение Ламы 3.1 405B. В самой работе (https://arxiv.org/abs/2407.21783) сказано, что использовалось до 16,384 H100 и упоминается предобучение в 54 дня (но там и другие этапы обучения были). Одна из не самых высоких оценок говорит, что стоить должно было порядка $60M (https://x.com/_LouiePeters/status/1816443587053092917?lang=en).

Про DeepSeek-V3 известно чуть конкретнее. Они использовали H800, урезанный для Китая экспортный вариант H100, и они сами пишут, что для полного обучения потребовалось 2.788M H800 GPU-часов, что соответствует $5.576M при цене аренды H800 в $2 за час.

Ну типа на десятичный порядок меньше. При сравнении с OpenAI наверное разница ещё больше.

Это как с Индией, которая отправляла аппараты на Марс и Луну дешевле, чем в Голливуде фильмы про космос делаются: марсианский Mangalyaan за $74M и лунный Chandrayaan-3 за $75M против фильма “Гравитация” за $100M (https://www.business-standard.com/india-news/what-makes-india-s-space-missions-cost-less-than-hollywood-sci-fi-movies-124110400430_1.html).

Во-вторых, DeepSeek-R1 (https://github.com/deepseek-ai/DeepSeek-R1), модели с ризонингом по типу OpenAI o1 или Google Gemini Thinking. В семействе две модели: DeepSeek-R1-Zero и DeepSeek-R1, обе построены на базе DeepSeek-V3-Base и такого же большого размера.

DeepSeek-R1-Zero (по аналогии с AlphaZero) обучена чистым RL (Group Relative Policy Optimization, GRPO — вариант PPO из другой их статьи, https://arxiv.org/abs/2402.03300), без SFT. Я думаю это очень значимый результат, как в Го оказалось, что можно без человеческих партий, так и здесь постепенно оказывается. Из интересного, во время обучения у модели случился “aha moment”, когда в цепочке рассуждений модель выдала “Wait, wait. Wait. That’s an aha moment I can flag here.” и пересмотрела изначальный подход к решению задачи.

Zero хороша, но иногда уходит в повторы, смешивает языки, не очень читабельна. DeepSeek-R1 перед RL обучена на небольшом (тысячи) количестве CoT примеров, они это называют Cold start data, чтобы дать более качественную начальную точку для RL. Далее тот же Reasoning-oriented RL, что и у Zero. Далее SFT на ризонинг (600k) и не-ризонинг (200k) данных. И потом ещё дополнительный этап RL. Эта модель сравнима с OpenAI-o1-1217.

Из того, что не привело к успеху: Process Reward Model (PRM) и Monte Carlo Tree Search (MCTS).

Также выпущена куча dense дистиллятов (1.5B, 7B, 8B, 14B, 32B, 70B) из R1 на базе Qwen и Llama. Эти сопоставимы с OpenAI-o1-mini.

HuggingFace взялся за Open R1 (https://github.com/huggingface/open-r1), полностью открытое воспроизведение DeepSeek R1. В кои-то веки не Китайские исследователи догоняют западных, а наоборот!

Но и этого DeepSeek показалось мало, и сегодня они выпустили ещё и Janus-Pro, развитие предыдущего Janus (https://github.com/deepseek-ai/Janus) с улучшенным обучением, данными и большим размером. Это мультимодальная моделька на 1B и 7B, умеет принимать на вход текст и картинки и на выходе тоже выдавать текст и картинки. На генерации вроде как бьют Dalle-3, SDXL, SD3-Medium.



group-telegram.com/tatiwonderland/64
Create:
Last Update:

DeepSeek moment

Нельзя ничего не сказать про DeepSeek. Эти ребята просто супер молодцы — так задизраптить всё поле мало кому удавалось. Ну OpenAI со своим ChatGPT, потом Цукерберг с Llama в опенсорсе, теперь вот DeepSeek.

DeepSeek сумели обучить модели хорошего качества по ценам на порядок ниже конкурентов.

Во-первых, DeepSeek-V3 (https://github.com/deepseek-ai/DeepSeek-V3), включает две модели DeepSeek-V3-Base и чат-версию DeepSeek-V3. Обе являются MoE с 671B параметров всего и 37B активных. Не для простых смертных модели, надо иметь неслабую multi-GPU конфигурацию что-то типа 8 H200 (но есть сжатые варианты от разных товарищей). По качеству где-то уровня GPT-4o 0513 и Claude-3.5-Sonnet-1022 и выше LLaMA-3.1 405B.

Есть разные оценки, сколько стоило обучение Ламы 3.1 405B. В самой работе (https://arxiv.org/abs/2407.21783) сказано, что использовалось до 16,384 H100 и упоминается предобучение в 54 дня (но там и другие этапы обучения были). Одна из не самых высоких оценок говорит, что стоить должно было порядка $60M (https://x.com/_LouiePeters/status/1816443587053092917?lang=en).

Про DeepSeek-V3 известно чуть конкретнее. Они использовали H800, урезанный для Китая экспортный вариант H100, и они сами пишут, что для полного обучения потребовалось 2.788M H800 GPU-часов, что соответствует $5.576M при цене аренды H800 в $2 за час.

Ну типа на десятичный порядок меньше. При сравнении с OpenAI наверное разница ещё больше.

Это как с Индией, которая отправляла аппараты на Марс и Луну дешевле, чем в Голливуде фильмы про космос делаются: марсианский Mangalyaan за $74M и лунный Chandrayaan-3 за $75M против фильма “Гравитация” за $100M (https://www.business-standard.com/india-news/what-makes-india-s-space-missions-cost-less-than-hollywood-sci-fi-movies-124110400430_1.html).

Во-вторых, DeepSeek-R1 (https://github.com/deepseek-ai/DeepSeek-R1), модели с ризонингом по типу OpenAI o1 или Google Gemini Thinking. В семействе две модели: DeepSeek-R1-Zero и DeepSeek-R1, обе построены на базе DeepSeek-V3-Base и такого же большого размера.

DeepSeek-R1-Zero (по аналогии с AlphaZero) обучена чистым RL (Group Relative Policy Optimization, GRPO — вариант PPO из другой их статьи, https://arxiv.org/abs/2402.03300), без SFT. Я думаю это очень значимый результат, как в Го оказалось, что можно без человеческих партий, так и здесь постепенно оказывается. Из интересного, во время обучения у модели случился “aha moment”, когда в цепочке рассуждений модель выдала “Wait, wait. Wait. That’s an aha moment I can flag here.” и пересмотрела изначальный подход к решению задачи.

Zero хороша, но иногда уходит в повторы, смешивает языки, не очень читабельна. DeepSeek-R1 перед RL обучена на небольшом (тысячи) количестве CoT примеров, они это называют Cold start data, чтобы дать более качественную начальную точку для RL. Далее тот же Reasoning-oriented RL, что и у Zero. Далее SFT на ризонинг (600k) и не-ризонинг (200k) данных. И потом ещё дополнительный этап RL. Эта модель сравнима с OpenAI-o1-1217.

Из того, что не привело к успеху: Process Reward Model (PRM) и Monte Carlo Tree Search (MCTS).

Также выпущена куча dense дистиллятов (1.5B, 7B, 8B, 14B, 32B, 70B) из R1 на базе Qwen и Llama. Эти сопоставимы с OpenAI-o1-mini.

HuggingFace взялся за Open R1 (https://github.com/huggingface/open-r1), полностью открытое воспроизведение DeepSeek R1. В кои-то веки не Китайские исследователи догоняют западных, а наоборот!

Но и этого DeepSeek показалось мало, и сегодня они выпустили ещё и Janus-Pro, развитие предыдущего Janus (https://github.com/deepseek-ai/Janus) с улучшенным обучением, данными и большим размером. Это мультимодальная моделька на 1B и 7B, умеет принимать на вход текст и картинки и на выходе тоже выдавать текст и картинки. На генерации вроде как бьют Dalle-3, SDXL, SD3-Medium.

BY Tati's Wonderland


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/tatiwonderland/64

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Some privacy experts say Telegram is not secure enough Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. He adds: "Telegram has become my primary news source."
from us


Telegram Tati's Wonderland
FROM American