group-telegram.com/ai_newz/2519
Last Update:
Jamba - вроде Mamba, вроде MoE, вроде трансформер, и в то же время ничто из этого
Заявляют, что по бенчам на уровне Mixtral 8x7b, параметров в целом чуть больше (52B vs 46.7B у Mixtral), но активируется чуть меньше (12B vs 12.9B у Mixtral). Говорят что поддерживается контекст вплоть до 256к, но относиться к этому стоит скептически. В целом не заслуживало бы внимания, если бы не архитектура.
А вот архитектурно это ОЧЕНЬ странная модель – мешают сразу три типа слоёв (см. вторую каритнку). В каждом блоке в 8 слоёв 4 MoE, 3 Mamba и 1 классический трансформерный. То есть на бумаге там 16 экспертов, из них активных 2, но тем не менее половина активируемых параметров при работе модели – dense.
Зачем так сделали – непонятно, но вроде работает. Главное преимущество по сравнению перед Mixtral - поддержка очень длинного контекста - 140к на одной A100, против 64k у Mixtral, причём на длинных контекстах Jamba вплоть до 3 раз быстрее. Главная проблема таких заявлений – непонятно как эта модель ведёт с такими огромными контекстами. Результатов для Needle In a Haystack бенчмарка нет.
В целом ничего не понятно, но очень интересно.
Веса
Блогпост
@ai_newz