Почему в прошлом 87% Data Science проектов не доходило до продакшена и как обеспечить ROI?
Всем привет! В прошлом посте мы уточнили, что data-инициативы должны строиться в соответствии с уровнем data maturity в компании. Также я уже упомянула важность и сложности быстрого и значительного ROI проектов, связанных с данными и ИИ (тут и тут). C-level лидеры последние 5+ лет активно инвестировали огромные деньги в развитие инфраструктуры данных и команд в сфере машинного обучения. При этом есть множество доказательств, что return получили не все проекты. Сегодня хочу поделиться с вами интересными мыслями о том, почему так много Data Science проектов проваливаются и как это исправить.
Что нужно сделать или изменить, чтобы избежать замкнутого круга неуспешных data проектов? Есть технические, а есть бизнесовые требования. Сегодня я хочу начать серию постов, которая раскроет бизнесовые компоненты и необходимые условия для успешных data проектов, которые генерируют отдачу. Самые важные компоненты: *️⃣Динамическая техническая стратегия *️⃣Continuous transformation через innovation mix, *️⃣Внедрение data-driven culture & literacy *️⃣Сollaborative opportunity discovery
Wait what? – Давайте по порядку! ▶️Продолжение в следующим посте.
Почему в прошлом 87% Data Science проектов не доходило до продакшена и как обеспечить ROI?
Всем привет! В прошлом посте мы уточнили, что data-инициативы должны строиться в соответствии с уровнем data maturity в компании. Также я уже упомянула важность и сложности быстрого и значительного ROI проектов, связанных с данными и ИИ (тут и тут). C-level лидеры последние 5+ лет активно инвестировали огромные деньги в развитие инфраструктуры данных и команд в сфере машинного обучения. При этом есть множество доказательств, что return получили не все проекты. Сегодня хочу поделиться с вами интересными мыслями о том, почему так много Data Science проектов проваливаются и как это исправить.
Что нужно сделать или изменить, чтобы избежать замкнутого круга неуспешных data проектов? Есть технические, а есть бизнесовые требования. Сегодня я хочу начать серию постов, которая раскроет бизнесовые компоненты и необходимые условия для успешных data проектов, которые генерируют отдачу. Самые важные компоненты: *️⃣Динамическая техническая стратегия *️⃣Continuous transformation через innovation mix, *️⃣Внедрение data-driven culture & literacy *️⃣Сollaborative opportunity discovery
Wait what? – Давайте по порядку! ▶️Продолжение в следующим посте.
Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. 'Wild West' As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows.
from tr