Telegram Group & Telegram Channel
Про нетерпеливость 🔥

Во многих компаниях руководство резко загорелось продвигать AI с момента запуска ChatGPT и стало требовать как можно быстрее создавать AI-продукты. Желательно ещё вчера, ведь «все делают GenAI, и мы тоже хотим!» Однако тушить такой энтузиазм особенно сложно, когда приходится объяснять, что, увы, всё не так уж просто. И что, к сожалению, попытки перескочить важные этапы на пути к цели ни к чему хорошему не приведут.

Я уже писала в одном из предыдущих постов, что процесс внедрения AI в любой компании должен начинаться с оценки data/AI maturity. Это уровень прогресса компании в использовании данных, развитии соответствующих юзкейсов и их интеграции в процессы организации. Каждой компании нужно индивидуально решать, до какого уровня стоит развиваться. Нет универсального решения, подходящего для всех!

После того как вы поняли, на каком уровне зрелости находится ваша компания и до какого уровня стоит развиваться, следующий шаг — работа над data architecture. Архитектура данных должна отражать текущие и будущие потребности, которые позволят реализовать юзкейсы и вписаться в долгосрочную стратегию компании. Здесь для начала нужно понять сам бизнес и его потребности для развития. Затем эти требования необходимо отобразить в технические requirements. Это включает, например, методы сбора, хранения и обработки данных, а также аспекты безопасности. Как всегда, нет единственного правильного решения — придется взвешивать cost-benefit каждой компоненты и функциональности. Например, вы хотите real-time везде? А реально везде оно вам нужно смотря на то что это обойдется вам дороже? Ценность для бизнеса оправдывает цену?

❗️При решениях, не впадайте в shiny-objects-syndrome. Это когда чисто смотришь только на самые хайповые технологии - ведь круто же и state-of-the-art! С высокой вероятностью вы примете слишком дорогие решения, которые не соответствуют ценности для компании, а в data community хайп уже сменился на что-то другое. Никогда не ведитесь на хайп!

Все хотят AI, но компании часто слишком рано ныряют в этот пруд. Прежде чем вкладывать огромные ресурсы в AI, необходимо заложить надёжный фундамент. Это включает и не самые «sexy» темы, как data governance: обеспечение качественных данных, плавную интеграцию различных источников и понимание, какие данные где вообще находятся. Многие компании столкнулись с неудачами, начав проекты без этой основы.

Ещё на практике часто слишком рано нанимают Data Scientists для создания модных AI-решений. При этом данные разбросаны по всей инфраструктуре, нет стандартов, и их работа сводится к data engineering, используя большое количество «изоленты», чтобы хоть как-то реализовать юзкейсы на старых системах. В итоге ни ROI от юзкейса не оправдывает ожиданий, ни Data Scientist не удовлетворён своей работой.

▶️ Итог: попытка перескочить все этапы и якобы ускорить процесс создания AI-продуктов обеспечит вам прямое попадание в список провальных проектов с данными. Не ведитесь на этот путь. Всем успехов!

#datapm #aitransformation
@ainastia
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ainastia/41
Create:
Last Update:

Про нетерпеливость 🔥

Во многих компаниях руководство резко загорелось продвигать AI с момента запуска ChatGPT и стало требовать как можно быстрее создавать AI-продукты. Желательно ещё вчера, ведь «все делают GenAI, и мы тоже хотим!» Однако тушить такой энтузиазм особенно сложно, когда приходится объяснять, что, увы, всё не так уж просто. И что, к сожалению, попытки перескочить важные этапы на пути к цели ни к чему хорошему не приведут.

Я уже писала в одном из предыдущих постов, что процесс внедрения AI в любой компании должен начинаться с оценки data/AI maturity. Это уровень прогресса компании в использовании данных, развитии соответствующих юзкейсов и их интеграции в процессы организации. Каждой компании нужно индивидуально решать, до какого уровня стоит развиваться. Нет универсального решения, подходящего для всех!

После того как вы поняли, на каком уровне зрелости находится ваша компания и до какого уровня стоит развиваться, следующий шаг — работа над data architecture. Архитектура данных должна отражать текущие и будущие потребности, которые позволят реализовать юзкейсы и вписаться в долгосрочную стратегию компании. Здесь для начала нужно понять сам бизнес и его потребности для развития. Затем эти требования необходимо отобразить в технические requirements. Это включает, например, методы сбора, хранения и обработки данных, а также аспекты безопасности. Как всегда, нет единственного правильного решения — придется взвешивать cost-benefit каждой компоненты и функциональности. Например, вы хотите real-time везде? А реально везде оно вам нужно смотря на то что это обойдется вам дороже? Ценность для бизнеса оправдывает цену?

❗️При решениях, не впадайте в shiny-objects-syndrome. Это когда чисто смотришь только на самые хайповые технологии - ведь круто же и state-of-the-art! С высокой вероятностью вы примете слишком дорогие решения, которые не соответствуют ценности для компании, а в data community хайп уже сменился на что-то другое. Никогда не ведитесь на хайп!

Все хотят AI, но компании часто слишком рано ныряют в этот пруд. Прежде чем вкладывать огромные ресурсы в AI, необходимо заложить надёжный фундамент. Это включает и не самые «sexy» темы, как data governance: обеспечение качественных данных, плавную интеграцию различных источников и понимание, какие данные где вообще находятся. Многие компании столкнулись с неудачами, начав проекты без этой основы.

Ещё на практике часто слишком рано нанимают Data Scientists для создания модных AI-решений. При этом данные разбросаны по всей инфраструктуре, нет стандартов, и их работа сводится к data engineering, используя большое количество «изоленты», чтобы хоть как-то реализовать юзкейсы на старых системах. В итоге ни ROI от юзкейса не оправдывает ожиданий, ни Data Scientist не удовлетворён своей работой.

▶️ Итог: попытка перескочить все этапы и якобы ускорить процесс создания AI-продуктов обеспечит вам прямое попадание в список провальных проектов с данными. Не ведитесь на этот путь. Всем успехов!

#datapm #aitransformation
@ainastia

BY Anastasia.ai – Tech Entrepreneur in🇨🇭




Share with your friend now:
group-telegram.com/ainastia/41

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. False news often spreads via public groups, or chats, with potentially fatal effects. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips.
from tr


Telegram Anastasia.ai – Tech Entrepreneur in🇨🇭
FROM American