У hugging face вышел качественный тех репорт о том, как они собирали свой датасет fineweb. Это набор дампов common-crawl(архив страниц из интернета), который почистили и превратили в 15T токенов на английском.
Почему круто. Common-crawl – это основной источник данных для претрейна LLM, если ты не open ai или antropic с собственными краулерами и парсерами. Его все по разному обрабывают или используют его производные. Обычно эти производные датасеты получены путем применения простых эваристик и максимум какой-то маленькой LM, обученной на википедии.
Но репортов с экспериментами на данных на таком масштабе с подробным описанием почти нет. А тут ребята 100k+ h100 gpu часов потратили на все и подробно описали.
Еще они выложили сабсет образовательных документов из кроула. Такой масштаб фильтрации классификаторами в open-source еще никто не выкладывал. И это как раз тот датасет, которым никто не делится (ни лама, ни мистраль, ни китайцы вроде qwen), но который все делают.
Все в статье, это по сути ровно то, чем моя команда занимается. Тут и про экстракцию кроула, и про фильтрацию, и про дедупликацию, и про классификаторы.
P.S. Если на этом посте наберется хотя бы 1 огонек – напишу разбор репорта с комментариями.
У hugging face вышел качественный тех репорт о том, как они собирали свой датасет fineweb. Это набор дампов common-crawl(архив страниц из интернета), который почистили и превратили в 15T токенов на английском.
Почему круто. Common-crawl – это основной источник данных для претрейна LLM, если ты не open ai или antropic с собственными краулерами и парсерами. Его все по разному обрабывают или используют его производные. Обычно эти производные датасеты получены путем применения простых эваристик и максимум какой-то маленькой LM, обученной на википедии.
Но репортов с экспериментами на данных на таком масштабе с подробным описанием почти нет. А тут ребята 100k+ h100 gpu часов потратили на все и подробно описали.
Еще они выложили сабсет образовательных документов из кроула. Такой масштаб фильтрации классификаторами в open-source еще никто не выкладывал. И это как раз тот датасет, которым никто не делится (ни лама, ни мистраль, ни китайцы вроде qwen), но который все делают.
Все в статье, это по сути ровно то, чем моя команда занимается. Тут и про экстракцию кроула, и про фильтрацию, и про дедупликацию, и про классификаторы.
P.S. Если на этом посте наберется хотя бы 1 огонек – напишу разбор репорта с комментариями.
So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised.
from tr