Telegram Group & Telegram Channel
Непрерывное математическое образование
https://www.mathi.uni-heidelberg.de/~flemmermeyer/qrg_proofs.html у квадратичного закона взаимности довольно много разных доказательств (уже Гаусс придумал 8 разных) — Франц Леммермейер собрал список из 332 доказательств (1788–2021)
и, конечно, на книгу Леммермейера «Reciprocity Laws: From Euler to Eisenstein» полезно обратить внимание

«The history of reciprocity laws is a history of algebraic number theory. This is a book on reciprocity laws, and our introductory remark is placed at the beginning as a warning: in fact a reader who is acquainted with little more than a course in elementary number theory may be surprised to learn that quadratic reciprocity does — in a sense that we will explain — belong to the realm of algebraic number theory. Heeke has formulated this as follows:

Modern number theory dates from the discovery of the reciprocity law. (…) The development of algebraic number theory has now actually shown that the content of the quadratic reciprocity law only becomes understandable if one passes to general algebraic numbers and that a proof appropriate to the nature of the problem can be best carried out with these higher methods.

Naturally, along with these higher methods came generalizations of the reciprocity law itself. It is no exaggeration to say that this generalization changed our way of looking at the reciprocity law dramatically; Emma Lehmer writes

It is well known that the famous Legendre law of quadratic reciprocity, of which over 150 proofs are in print, has been generalized over the years to algebraic fields by a number of famous mathematicians from Gauss to Artin to the extent that it has become virtually unrecognizable.

(…)

In a way, Artin's reciprocity law closed the subject (except for the subsequent work on explicit formulas, not to mention the dramatic progress into non-abelian class field theory that is connected in particular with the names of Shimura and Langlands or the recent generalization of class field theory to “higher dimensional” local fields), and the decline of interest in the classical reciprocity laws was a natural consequence. Nevertheless, two of the papers that helped shape the research in number theory during the second half of this century directly referred to Gauss's work on biquadratic residues: first, there's Weil's paper from 1949 on equations over finite fields in which he announced the Weil Conjectures and which was inspired directly by reading Gauss:

In 1947, in Chicago, I felt bored and depressed, and, not knowing what to do, I started reading Gauss's two memoirs on biquadratic residues, which I had never read before. (…) This led me in turn to conjectures about varieties over finite fields, ...

namely the Weil Conjectures, now Deligne's theorem (see Chapter 10).

The other central theme in number theory during the last few decades came into being in two papers by Birch & Swinnerton-Dyer (…); in these papers, the quartic reciprocity plays a central role in checking some instances of their conjectures (…). As a matter of fact, even the explicit formulas of Artin-Hasse were resurrected (and generalized) by Iwasawa, Coates and Wiles in order to make progress on the Birch-Swinnerton-Dyer conjecture.»



group-telegram.com/cme_channel/2252
Create:
Last Update:

и, конечно, на книгу Леммермейера «Reciprocity Laws: From Euler to Eisenstein» полезно обратить внимание

«The history of reciprocity laws is a history of algebraic number theory. This is a book on reciprocity laws, and our introductory remark is placed at the beginning as a warning: in fact a reader who is acquainted with little more than a course in elementary number theory may be surprised to learn that quadratic reciprocity does — in a sense that we will explain — belong to the realm of algebraic number theory. Heeke has formulated this as follows:

Modern number theory dates from the discovery of the reciprocity law. (…) The development of algebraic number theory has now actually shown that the content of the quadratic reciprocity law only becomes understandable if one passes to general algebraic numbers and that a proof appropriate to the nature of the problem can be best carried out with these higher methods.

Naturally, along with these higher methods came generalizations of the reciprocity law itself. It is no exaggeration to say that this generalization changed our way of looking at the reciprocity law dramatically; Emma Lehmer writes

It is well known that the famous Legendre law of quadratic reciprocity, of which over 150 proofs are in print, has been generalized over the years to algebraic fields by a number of famous mathematicians from Gauss to Artin to the extent that it has become virtually unrecognizable.

(…)

In a way, Artin's reciprocity law closed the subject (except for the subsequent work on explicit formulas, not to mention the dramatic progress into non-abelian class field theory that is connected in particular with the names of Shimura and Langlands or the recent generalization of class field theory to “higher dimensional” local fields), and the decline of interest in the classical reciprocity laws was a natural consequence. Nevertheless, two of the papers that helped shape the research in number theory during the second half of this century directly referred to Gauss's work on biquadratic residues: first, there's Weil's paper from 1949 on equations over finite fields in which he announced the Weil Conjectures and which was inspired directly by reading Gauss:

In 1947, in Chicago, I felt bored and depressed, and, not knowing what to do, I started reading Gauss's two memoirs on biquadratic residues, which I had never read before. (…) This led me in turn to conjectures about varieties over finite fields, ...

namely the Weil Conjectures, now Deligne's theorem (see Chapter 10).

The other central theme in number theory during the last few decades came into being in two papers by Birch & Swinnerton-Dyer (…); in these papers, the quartic reciprocity plays a central role in checking some instances of their conjectures (…). As a matter of fact, even the explicit formulas of Artin-Hasse were resurrected (and generalized) by Iwasawa, Coates and Wiles in order to make progress on the Birch-Swinnerton-Dyer conjecture.»

BY Непрерывное математическое образование


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/cme_channel/2252

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. He adds: "Telegram has become my primary news source." Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation.
from tr


Telegram Непрерывное математическое образование
FROM American