Telegram Group & Telegram Channel
как делить числа?

пусть у нас есть числа a и b и мы хотим быстро посчитать a/b с большой точностью (а складывать-умножать числа мы уже умеем)

можно сдвинуть числитель и знаменатель на степень двойки, так что достаточно научиться находить 1/b для b между, скажем, 1/2 и 1

в этом посте нет экспериментальной математики, но так понравилась история, что не могу не поделиться — спасибо рассказавшему про это А.Гасникову (все ошибки, естественно, на моей совести)

1.

когда надо вычислить значение функции, у меня первый рефлекс — разложить ее в ряд Тейлора, т.е. в данном случае просто воспользоваться бесконечной геометрической прогрессией:

если b=1-q, то 1/b=1+q+q²+q³+… — сиди и вычисляй столько членов, сколько тебе нужно (так как |q|<1/2, рано или поздно всё получится)… но сколько нужно? чтобы найти N (двоичных) знаков после запятой нужно взять ~N членов, т.е. сделать ~N умножений, и это не очень вдохновляет

в конце концов, уравнение f(x)=0 для монотонной функции b всегда можно решать методом деления пополам (выбираем ту половину, на концах которой у f разные знаки, повторяем процесс) — уже это позволяет искать N знаков после запятой за ~N действий (для деления такой способ так же известен как деление в столбик)

но оказывается, что делить можно и намного быстрее, чем в столбик!

2.

если функция достаточно хорошая, то уравнение f(x)=0 можно быстро приближенно решать при помощи метода Ньютона

(
напомню идею: если x — приближенное значение корня, то рядом ним график функции недалеко ушел от касательной, поэтому в качестве следующего приближения можно взять пересечения касательной с нулем, т.е. x→x-f(x)/f'(x)

и в некоторой окрестности корня метод Ньютона, если производная в этом корне не равна 0, сходится очень быстро: за итерацию погрешность ~возводится в квадрат
)

на первый взгляд, нам метод Ньютона не поможет, так как в него входит деление — но тут происходит чудо: если сформулировать нашу задачу как задачу поиска нуля функции f(x)=1/x-b, то в методе Ньютона все деления сокращаются: f/f'=(1/x-b)⋅(-x²)=-x⋅(1-bx)

и получается рецепт x→x⋅(2-bx), который позволяет получить N знаков числа 1/b всего за ~log(N) операций (за каждую операцию количество верных знаков ~удваивается)

можно проверить, как это работает:

from mpmath import *
mp.dps = 300

b = mpf(57)/100
x = mpf(1)
print("1/"+nstr(b,30))
print(0,":",nstr(x,80))
for k in range(10):
x = x*(2-b*x)
print(k+1,":",nstr(x,80),
"diff:",nstr(abs(1/b-x),2,min_fixed=1))
print("T :",nstr(1/b,80))


3.

что это всё-таки за странная формула x→x(2-bx), можно ли это связать с чем-то более знакомым?

оказывается, это просто способ быстро вычислять частичные суммы всё той же геометрической прогрессии! действительно, если b = 1-q, и x = (1-q^N)/(1-q), то x’ = (1-q^N)/(1-q) ⋅ (1+q^N) = (1-q^{2N})/(1-q) — т.е. за шаг мы переходим от суммы первых N членов к сумме первых 2N членов геометрической прогрессии — немножко похоже на быстрое возведение в степень, только еще формулы сокращенного умножения знать надо

===

что можно ускорять какие-то базовые операции, меня впечатляет; вот небольшой текст про это в Мат. составляющей (в т.ч. про быстрое умножение): https://book.etudes.ru/articles/fast-arithmetic/

метод Ньютона здесь уже появлялся раньше, и будет, думаю, обсуждаться еще



group-telegram.com/compmathweekly/16
Create:
Last Update:

как делить числа?

пусть у нас есть числа a и b и мы хотим быстро посчитать a/b с большой точностью (а складывать-умножать числа мы уже умеем)

можно сдвинуть числитель и знаменатель на степень двойки, так что достаточно научиться находить 1/b для b между, скажем, 1/2 и 1

в этом посте нет экспериментальной математики, но так понравилась история, что не могу не поделиться — спасибо рассказавшему про это А.Гасникову (все ошибки, естественно, на моей совести)

1.

когда надо вычислить значение функции, у меня первый рефлекс — разложить ее в ряд Тейлора, т.е. в данном случае просто воспользоваться бесконечной геометрической прогрессией:

если b=1-q, то 1/b=1+q+q²+q³+… — сиди и вычисляй столько членов, сколько тебе нужно (так как |q|<1/2, рано или поздно всё получится)… но сколько нужно? чтобы найти N (двоичных) знаков после запятой нужно взять ~N членов, т.е. сделать ~N умножений, и это не очень вдохновляет

в конце концов, уравнение f(x)=0 для монотонной функции b всегда можно решать методом деления пополам (выбираем ту половину, на концах которой у f разные знаки, повторяем процесс) — уже это позволяет искать N знаков после запятой за ~N действий (для деления такой способ так же известен как деление в столбик)

но оказывается, что делить можно и намного быстрее, чем в столбик!

2.

если функция достаточно хорошая, то уравнение f(x)=0 можно быстро приближенно решать при помощи метода Ньютона

(
напомню идею: если x — приближенное значение корня, то рядом ним график функции недалеко ушел от касательной, поэтому в качестве следующего приближения можно взять пересечения касательной с нулем, т.е. x→x-f(x)/f'(x)

и в некоторой окрестности корня метод Ньютона, если производная в этом корне не равна 0, сходится очень быстро: за итерацию погрешность ~возводится в квадрат
)

на первый взгляд, нам метод Ньютона не поможет, так как в него входит деление — но тут происходит чудо: если сформулировать нашу задачу как задачу поиска нуля функции f(x)=1/x-b, то в методе Ньютона все деления сокращаются: f/f'=(1/x-b)⋅(-x²)=-x⋅(1-bx)

и получается рецепт x→x⋅(2-bx), который позволяет получить N знаков числа 1/b всего за ~log(N) операций (за каждую операцию количество верных знаков ~удваивается)

можно проверить, как это работает:


from mpmath import *
mp.dps = 300

b = mpf(57)/100
x = mpf(1)
print("1/"+nstr(b,30))
print(0,":",nstr(x,80))
for k in range(10):
x = x*(2-b*x)
print(k+1,":",nstr(x,80),
"diff:",nstr(abs(1/b-x),2,min_fixed=1))
print("T :",nstr(1/b,80))


3.

что это всё-таки за странная формула x→x(2-bx), можно ли это связать с чем-то более знакомым?

оказывается, это просто способ быстро вычислять частичные суммы всё той же геометрической прогрессии! действительно, если b = 1-q, и x = (1-q^N)/(1-q), то x’ = (1-q^N)/(1-q) ⋅ (1+q^N) = (1-q^{2N})/(1-q) — т.е. за шаг мы переходим от суммы первых N членов к сумме первых 2N членов геометрической прогрессии — немножко похоже на быстрое возведение в степень, только еще формулы сокращенного умножения знать надо

===

что можно ускорять какие-то базовые операции, меня впечатляет; вот небольшой текст про это в Мат. составляющей (в т.ч. про быстрое умножение): https://book.etudes.ru/articles/fast-arithmetic/

метод Ньютона здесь уже появлялся раньше, и будет, думаю, обсуждаться еще

BY Компьютерная математика Weekly


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/compmathweekly/16

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. Telegram Messenger Blocks Navalny Bot During Russian Election As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report.
from tr


Telegram Компьютерная математика Weekly
FROM American