Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ Бесплатные полезные руководства по дистилляции моделей:

1. Руководство по дистилляции от OpenAI 🖥

Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.

Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.

- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.

- Создание обучающих данных для компактной модели:
Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.

- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.

🔗Ссылка

2. Учебник по дистилляции знаний от PyTorch 🔥

Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.

Основные аспекты руководства:

- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.

- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.

- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.

Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.

Ссылка

3. Jetson Introduction to Knowledge Distillation от Nvidia 🖥

В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.

Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.

Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.

🔗 Ссылка

4. Учебник по дистилляции знаний от Keras ⭐️

Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.

🔗Github
🔗Учебник Keras

5. Руководство по дистилляции от
huggingface
🤗

Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.

🔗 Ссылка

6. Дистилляция знаний для задач компьютерного зрения от huggingface 👁

Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.

🔗Ссылка

#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/data_analysis_ml/3202
Create:
Last Update:

✔️ Бесплатные полезные руководства по дистилляции моделей:

1. Руководство по дистилляции от OpenAI 🖥

Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.

Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.

- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.

- Создание обучающих данных для компактной модели:
Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.

- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.

🔗Ссылка

2. Учебник по дистилляции знаний от PyTorch 🔥

Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.

Основные аспекты руководства:

- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.

- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.

- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.

Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.

Ссылка

3. Jetson Introduction to Knowledge Distillation от Nvidia 🖥

В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.

Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.

Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.

🔗 Ссылка

4. Учебник по дистилляции знаний от Keras ⭐️

Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.

🔗Github
🔗Учебник Keras

5. Руководство по дистилляции от
huggingface
🤗

Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.

🔗 Ссылка

6. Дистилляция знаний для задач компьютерного зрения от huggingface 👁

Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.

🔗Ссылка

#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch

BY Анализ данных (Data analysis)








Share with your friend now:
group-telegram.com/data_analysis_ml/3202

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. Telegram Messenger Blocks Navalny Bot During Russian Election "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices.
from tr


Telegram Анализ данных (Data analysis)
FROM American