Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/epsiloncorrect/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
epsilon correct | Telegram Webview: epsiloncorrect/171 -
Telegram Group & Telegram Channel
Классы алгоритмической сложности для трансформеров

Сначала расскажу про более объёмную статью, которую мы выпустили на этой неделе. Мы пытаемся дать теоретические оценки того, как эффективно трансформеры решают те или иные алгоритмические задачи. Алгоритмы – это такой ключик к пониманию способностей моделей рассуждать.

Про трансформерные модели мы знаем довольно много: они Тюринг-полные – правда, при polylog-числе слоёв, а при константной глубине они ограничены классом TC0. Это всё, конечно, очень интересно 😐, но хочется изучать трансформеры в более реалистичных сценариях.

Вот тут на сцену выходим мы🤴! В статье мы анализируем девять графовых алгоритмов 👥, которые трансформеры решают в трёх разных режимах параметров. Под параметрами в статье понимаем ширину слоя m, глубину сети L, и аналог chain-of-though токенов, которые позволяют модели покряхтеть над задачкой подольше. 🤔

Внимательный подпищеки заметили 🧐, что алгоритмы мы рассматриваем только графовые. Не серчайте – это всё ради науки! Сложность графовых задач легко варьировать, к тому же, существует сильно больше классов задач, чем для операций с символьными манипуляцями.

Совсем простые задачи 😛, например, как подсчет узлов или рёбер, могут быть решены трансформерами глубины один с шириной log 𝐍. Трансформеры также могут выполнять параллельные алгоритмы - мы нашли три задачи, которые могут быть эффективно решены с помощью трансформеров глубины log 𝐍.

А ещё на графах мы можем сравнить трансформеры с графовыми нейросетями. Теоретически мы показываем случаи, где трансформерам нужно меньше вычислений для решения разных задач, и на практике показываем, как с некоторыми алгоритмическими задачами трансформеры справляются лучше GNNок. Да, практическая часть в статье тоже весёлая – мы попробовали посравнивать трансформеры, натренированные для конкретной задачи с файнтьюненными LLMками! А получилось – читать продолжение в источнике…

Статья получилась жирная 🥁 на теоремы и эмпирику, но, надеюсь, кому-нибудь да понравится.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/171
Create:
Last Update:

Классы алгоритмической сложности для трансформеров

Сначала расскажу про более объёмную статью, которую мы выпустили на этой неделе. Мы пытаемся дать теоретические оценки того, как эффективно трансформеры решают те или иные алгоритмические задачи. Алгоритмы – это такой ключик к пониманию способностей моделей рассуждать.

Про трансформерные модели мы знаем довольно много: они Тюринг-полные – правда, при polylog-числе слоёв, а при константной глубине они ограничены классом TC0. Это всё, конечно, очень интересно 😐, но хочется изучать трансформеры в более реалистичных сценариях.

Вот тут на сцену выходим мы🤴! В статье мы анализируем девять графовых алгоритмов 👥, которые трансформеры решают в трёх разных режимах параметров. Под параметрами в статье понимаем ширину слоя m, глубину сети L, и аналог chain-of-though токенов, которые позволяют модели покряхтеть над задачкой подольше. 🤔

Внимательный подпищеки заметили 🧐, что алгоритмы мы рассматриваем только графовые. Не серчайте – это всё ради науки! Сложность графовых задач легко варьировать, к тому же, существует сильно больше классов задач, чем для операций с символьными манипуляцями.

Совсем простые задачи 😛, например, как подсчет узлов или рёбер, могут быть решены трансформерами глубины один с шириной log 𝐍. Трансформеры также могут выполнять параллельные алгоритмы - мы нашли три задачи, которые могут быть эффективно решены с помощью трансформеров глубины log 𝐍.

А ещё на графах мы можем сравнить трансформеры с графовыми нейросетями. Теоретически мы показываем случаи, где трансформерам нужно меньше вычислений для решения разных задач, и на практике показываем, как с некоторыми алгоритмическими задачами трансформеры справляются лучше GNNок. Да, практическая часть в статье тоже весёлая – мы попробовали посравнивать трансформеры, натренированные для конкретной задачи с файнтьюненными LLMками! А получилось – читать продолжение в источнике…

Статья получилась жирная 🥁 на теоремы и эмпирику, но, надеюсь, кому-нибудь да понравится.

BY epsilon correct




Share with your friend now:
group-telegram.com/epsiloncorrect/171

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides.
from tr


Telegram epsilon correct
FROM American