Telegram Group & Telegram Channel
Классы алгоритмической сложности для трансформеров

Сначала расскажу про более объёмную статью, которую мы выпустили на этой неделе. Мы пытаемся дать теоретические оценки того, как эффективно трансформеры решают те или иные алгоритмические задачи. Алгоритмы – это такой ключик к пониманию способностей моделей рассуждать.

Про трансформерные модели мы знаем довольно много: они Тюринг-полные – правда, при polylog-числе слоёв, а при константной глубине они ограничены классом TC0. Это всё, конечно, очень интересно 😐, но хочется изучать трансформеры в более реалистичных сценариях.

Вот тут на сцену выходим мы🤴! В статье мы анализируем девять графовых алгоритмов 👥, которые трансформеры решают в трёх разных режимах параметров. Под параметрами в статье понимаем ширину слоя m, глубину сети L, и аналог chain-of-though токенов, которые позволяют модели покряхтеть над задачкой подольше. 🤔

Внимательный подпищеки заметили 🧐, что алгоритмы мы рассматриваем только графовые. Не серчайте – это всё ради науки! Сложность графовых задач легко варьировать, к тому же, существует сильно больше классов задач, чем для операций с символьными манипуляцями.

Совсем простые задачи 😛, например, как подсчет узлов или рёбер, могут быть решены трансформерами глубины один с шириной log 𝐍. Трансформеры также могут выполнять параллельные алгоритмы - мы нашли три задачи, которые могут быть эффективно решены с помощью трансформеров глубины log 𝐍.

А ещё на графах мы можем сравнить трансформеры с графовыми нейросетями. Теоретически мы показываем случаи, где трансформерам нужно меньше вычислений для решения разных задач, и на практике показываем, как с некоторыми алгоритмическими задачами трансформеры справляются лучше GNNок. Да, практическая часть в статье тоже весёлая – мы попробовали посравнивать трансформеры, натренированные для конкретной задачи с файнтьюненными LLMками! А получилось – читать продолжение в источнике…

Статья получилась жирная 🥁 на теоремы и эмпирику, но, надеюсь, кому-нибудь да понравится.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/171
Create:
Last Update:

Классы алгоритмической сложности для трансформеров

Сначала расскажу про более объёмную статью, которую мы выпустили на этой неделе. Мы пытаемся дать теоретические оценки того, как эффективно трансформеры решают те или иные алгоритмические задачи. Алгоритмы – это такой ключик к пониманию способностей моделей рассуждать.

Про трансформерные модели мы знаем довольно много: они Тюринг-полные – правда, при polylog-числе слоёв, а при константной глубине они ограничены классом TC0. Это всё, конечно, очень интересно 😐, но хочется изучать трансформеры в более реалистичных сценариях.

Вот тут на сцену выходим мы🤴! В статье мы анализируем девять графовых алгоритмов 👥, которые трансформеры решают в трёх разных режимах параметров. Под параметрами в статье понимаем ширину слоя m, глубину сети L, и аналог chain-of-though токенов, которые позволяют модели покряхтеть над задачкой подольше. 🤔

Внимательный подпищеки заметили 🧐, что алгоритмы мы рассматриваем только графовые. Не серчайте – это всё ради науки! Сложность графовых задач легко варьировать, к тому же, существует сильно больше классов задач, чем для операций с символьными манипуляцями.

Совсем простые задачи 😛, например, как подсчет узлов или рёбер, могут быть решены трансформерами глубины один с шириной log 𝐍. Трансформеры также могут выполнять параллельные алгоритмы - мы нашли три задачи, которые могут быть эффективно решены с помощью трансформеров глубины log 𝐍.

А ещё на графах мы можем сравнить трансформеры с графовыми нейросетями. Теоретически мы показываем случаи, где трансформерам нужно меньше вычислений для решения разных задач, и на практике показываем, как с некоторыми алгоритмическими задачами трансформеры справляются лучше GNNок. Да, практическая часть в статье тоже весёлая – мы попробовали посравнивать трансформеры, натренированные для конкретной задачи с файнтьюненными LLMками! А получилось – читать продолжение в источнике…

Статья получилась жирная 🥁 на теоремы и эмпирику, но, надеюсь, кому-нибудь да понравится.

BY epsilon correct




Share with your friend now:
group-telegram.com/epsiloncorrect/171

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. NEWS Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said.
from tr


Telegram epsilon correct
FROM American