Telegram Group & Telegram Channel
Завтра хороним Анатолия Моисеевича Вершика, моего великого учителя.

Я общался со многими умными и очень умными людьми, лауреатами и чемпионами. Способными решать дико сложные задачи. Чтобы так видеть
и чувствовать математику - никого.

В последние годы он много говорил и, определённо, ещё больше думал о смерти - при этом был полон планов, и планы как всегда были максимально амбициозные. (конечно, тут нет противоречия). Не как доказать то и это, а как должна быть устроена такая и этакая наука. Людям не с такой интуицией, как у АМ (а это так-то все мы, дорогие друзья) бывало потом удивительно, когда так она устроена и оказывалась.

Несколько вещей, которые непроизвольно воспринимаешь, учась у АМ.

Хороший вкус важнее технической силы. Внутренний интерес к задаче важнее моды. Понимание важнее, чем технически верное доказательства, пока теорема не понята вполне - надо над ней думать, даже если доказательство есть. Важнее уметь задавать вопросы, чем отвечать. Нельзя бояться нового. Вообще нельзя бояться.

Тут канал математический, а не личный, так что позволю себе привести один пример из творчества АМ. Станислав Улам поставил вопрос о размере максимальной возрастающей подпоследовательности в случайной перестановке большого числа n. Он был решён Вершиком и Керовым (1984), в двух словах так: надо сопоставить перестановке диаграмму Юнга с помощью алгоритма Робинсона - Шенстеда - Кнута, тогда максимальной возрастающей подпоследовательности соответствует её первая строка. Сколько раз получена каждая диаграмма, говорит формула крюков. Логарифм произведения крюков аппроксимируется интегралом, максимум интеграла находится стандартными методами, и так получается не только длина первой строки, но и вся предельная форма диаграммы, известная сейчас как кривая Вершика - Керова - Логана - Шеппа (задачу Улама Логан и Шепп, действовавшие независимо, при этом не решили: это более тонкий вопрос, чем предельная форма).

Таких вопросов в вероятностной и экстремальной комбинаторике можно задать и задают сколько угодно. И вообще-то АМ этой темой самой по себе не занимался. И совершенно не удивительно, только так и могло быть, что он ответил именно на тот, из которого в скорости выросла целая большая наука, со случайными матрицами, точечными процессами, специальными функциями и всем что вы можете вообразить - см. напр. пленарный доклад на ICM 2006 Ричарда Стенли или книжку Дана Ромика "The Surprising Mathematics of Longest Increasing Subsequences".



group-telegram.com/fedyamath/52
Create:
Last Update:

Завтра хороним Анатолия Моисеевича Вершика, моего великого учителя.

Я общался со многими умными и очень умными людьми, лауреатами и чемпионами. Способными решать дико сложные задачи. Чтобы так видеть
и чувствовать математику - никого.

В последние годы он много говорил и, определённо, ещё больше думал о смерти - при этом был полон планов, и планы как всегда были максимально амбициозные. (конечно, тут нет противоречия). Не как доказать то и это, а как должна быть устроена такая и этакая наука. Людям не с такой интуицией, как у АМ (а это так-то все мы, дорогие друзья) бывало потом удивительно, когда так она устроена и оказывалась.

Несколько вещей, которые непроизвольно воспринимаешь, учась у АМ.

Хороший вкус важнее технической силы. Внутренний интерес к задаче важнее моды. Понимание важнее, чем технически верное доказательства, пока теорема не понята вполне - надо над ней думать, даже если доказательство есть. Важнее уметь задавать вопросы, чем отвечать. Нельзя бояться нового. Вообще нельзя бояться.

Тут канал математический, а не личный, так что позволю себе привести один пример из творчества АМ. Станислав Улам поставил вопрос о размере максимальной возрастающей подпоследовательности в случайной перестановке большого числа n. Он был решён Вершиком и Керовым (1984), в двух словах так: надо сопоставить перестановке диаграмму Юнга с помощью алгоритма Робинсона - Шенстеда - Кнута, тогда максимальной возрастающей подпоследовательности соответствует её первая строка. Сколько раз получена каждая диаграмма, говорит формула крюков. Логарифм произведения крюков аппроксимируется интегралом, максимум интеграла находится стандартными методами, и так получается не только длина первой строки, но и вся предельная форма диаграммы, известная сейчас как кривая Вершика - Керова - Логана - Шеппа (задачу Улама Логан и Шепп, действовавшие независимо, при этом не решили: это более тонкий вопрос, чем предельная форма).

Таких вопросов в вероятностной и экстремальной комбинаторике можно задать и задают сколько угодно. И вообще-то АМ этой темой самой по себе не занимался. И совершенно не удивительно, только так и могло быть, что он ответил именно на тот, из которого в скорости выросла целая большая наука, со случайными матрицами, точечными процессами, специальными функциями и всем что вы можете вообразить - см. напр. пленарный доклад на ICM 2006 Ричарда Стенли или книжку Дана Ромика "The Surprising Mathematics of Longest Increasing Subsequences".

BY fp math


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/fedyamath/52

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can."
from tr


Telegram fp math
FROM American