Telegram Group & Telegram Channel
Так, хватит хиханек-хаханек, пора возобновлять рубрику #книги . Сегодня я хочу рассказать про интересную книжку под названием "ГЕОМЕТРИИ" от А.Б. Сосинского 💅 (рис. 1).

Геометрия в ней понимается в смысле Клейна, т.е. как множество с действием группы на нем. В качестве множества обычно берется множество точек, а в качестве группы - множество допустимых в данной геометрии преобразований. Подобным образом автор задает "геометрии симметрий многогранников", а также знакомые нам обычную геометрию Евклида, Лобачевского, Римана и т.д. (см. оглавление книги - рис. 2). Это не совсем стандартный подход, и читать про него довольно интересно.

В частности, мне понравилась часть про платоновы тела (рис. 3-4), в которой автор доказывает с помощью методов теории групп, почему в трехмерном пространстве их существует всего пять; да и в целом часть про теорию групп в этой книге мне понравилась.

Книга сравнительно доступна: она рассчитана на студентов мехмата или другого похожего факультета 1-2 курсов. Еще из плюсов книги можно отметить то, что она снабжена большим количеством упражнений (рис. 5), многие из которых имеют ответы и указания к решению в конце.

Я сама пока что прочитала около трети книги. Из того, что на данный момент непонятно: не соображу, почему все-таки если задать Евклидову геометрию (и другие на рис. 6-7) множеством точек и действующим на нем преобразованием, то нам больше не обязательно использовать аксиомы Евклида? Чтобы это было правдой, аксиомы Евклида должны выводиться из этого нового определения, но как сделать этот вывод, мне пока не очевидно. 😌

UPD: в комментариях начали разбирать этот вопрос, заходите
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/forodirchNEWS/2827
Create:
Last Update:

Так, хватит хиханек-хаханек, пора возобновлять рубрику #книги . Сегодня я хочу рассказать про интересную книжку под названием "ГЕОМЕТРИИ" от А.Б. Сосинского 💅 (рис. 1).

Геометрия в ней понимается в смысле Клейна, т.е. как множество с действием группы на нем. В качестве множества обычно берется множество точек, а в качестве группы - множество допустимых в данной геометрии преобразований. Подобным образом автор задает "геометрии симметрий многогранников", а также знакомые нам обычную геометрию Евклида, Лобачевского, Римана и т.д. (см. оглавление книги - рис. 2). Это не совсем стандартный подход, и читать про него довольно интересно.

В частности, мне понравилась часть про платоновы тела (рис. 3-4), в которой автор доказывает с помощью методов теории групп, почему в трехмерном пространстве их существует всего пять; да и в целом часть про теорию групп в этой книге мне понравилась.

Книга сравнительно доступна: она рассчитана на студентов мехмата или другого похожего факультета 1-2 курсов. Еще из плюсов книги можно отметить то, что она снабжена большим количеством упражнений (рис. 5), многие из которых имеют ответы и указания к решению в конце.

Я сама пока что прочитала около трети книги. Из того, что на данный момент непонятно: не соображу, почему все-таки если задать Евклидову геометрию (и другие на рис. 6-7) множеством точек и действующим на нем преобразованием, то нам больше не обязательно использовать аксиомы Евклида? Чтобы это было правдой, аксиомы Евклида должны выводиться из этого нового определения, но как сделать этот вывод, мне пока не очевидно. 😌

UPD: в комментариях начали разбирать этот вопрос, заходите

BY Кофейный теоретик










Share with your friend now:
group-telegram.com/forodirchNEWS/2827

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup.
from tr


Telegram Кофейный теоретик
FROM American