Telegram Group & Telegram Channel
Resurrecting Recurrent Neural Networks for Long Sequences
Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, Soham De
Статья: https://arxiv.org/abs/2303.06349

Продолжаем про RNN. У нас было про LEM (https://www.group-telegram.com/tr/gonzo_ML.com/857), было про state space models и в частности про S4 (https://www.group-telegram.com/tr/gonzo_ML.com/1424), было про RWKV (https://www.group-telegram.com/tr/gonzo_ML.com/1647). Ещё из сравнительно недавних работ было исследование от DeepMind. Это своего рода возврат к классике.

С RNN долгое время была проблема, что они быстры на инференс, но медленно обучаются в смысле плохо параллелятся, и их сложно обучать на длинных последовательностях. Со свежими state space models (SSM) это в целом уже не так, они и на инференс так же хороши, и обучение их параллелится, и очень длинные последовательности могут обрабатывать. Но они хоть и эквивалентны RNN в режиме инференса, в режиме обучения у них есть важные отличия типа дискретизации непрерывной системы и очень специальной инициализации, про которые, кажется, ещё не до конца ясно, какова механика работы этой кухни.

В текущей работе авторы задаются вопросом, можно ли достичь перформанса глубоких SSM традиционными глубокими RNN (причём ванильными, а не LSTM)? И отвечают, что можно. Достигают этого серией маленьких шагов, и полученную модель называют Linear Recurrent Unit (LRU).

Основные шаги таковы:

0. Vanilla RNN. Пляшем от базовой рекуррентности:

𝑥_𝑘 = 𝜎(𝐴𝑥_{𝑘−1} + 𝐵𝑢_𝑘)
𝑦_𝑘 = 𝐶𝑥_𝑘 + 𝐷𝑢_𝑘

где
(𝑢_1, 𝑢_2, . . . , 𝑢_𝐿) -- входы размерности 𝐻_in,
(𝑦_1, 𝑦_2, . . . , 𝑦_𝐿) -- выходы размерности 𝐻_out,
𝑥_𝑘 -- скрытое состояние размерности N в момент времени k,
A,B,C,D -- матрицы с обучаемыми параметрами

1. Linear Recurrences. Если SSM слои заменить на vanilla RNN, то нелинейности типа tanh или ReLU в рекуррентности приводят к сильной просадке качества. Зато если нелинейности убрать и оставить линейные рекуррентности, то всё существенно улучшается. Рекуррентная формула превращается в

𝑥_𝑘 = 𝐴𝑥_{𝑘−1} + 𝐵𝑢_𝑘.

Это интересный результат, идущий вразрез с массовым пониманием важности нелинейностей. Возможно, это также одна из причин успеха глубоких SSM, где рекуррентность тоже линейная.

Сложные нелинейные отображения при этом можно моделировать соединением линейных RNN слоёв и нелинейных MLP (в этом смысле паттерн аналогичен последовательности слоёв MHSA+MLP в трансформере). В приложении есть отдельный большой интересный раздел вокруг этого.

“any sufficiently regular nonlinear autonomous dynamical system can be made linear under a high-dimensional nonlinear blow-up of the state-space. Sounds familiar? This is exactly what a wide MLP + Linear RNN can do“

2. Complex Diagonal Recurrent Matrices. Линейную рекуррентность уже можно развернуть в легко параллелизуемую сумму. Далее dense linear RNN слои могут быть репараметризованы в комплексную диагональную форму, где матрица A заменяется на:

𝐴 = 𝑃Λ𝑃^{−1},
𝑃 ∈ ℂ^{𝑁×𝑁},
Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑁) ∈ ℂ^{𝑁×𝑁}

Комплексные числа нужны для диагонализации несимметричных матриц. Это не ухудшает выразительность, а диагональность позволяет ещё ускорить хорошо параллелизуемые вычисления.

Проверялись на Long Range Arena (LRA). На sCIFAR диагональная линейная RNN обучалась в 8 раз быстрее обычной с ReLU, и сравнялась по скорости с авторской имплементацией S4D (диагональный вариант S4, https://arxiv.org/abs/2203.14343) и S5 (упрощённый вариант S4, https://arxiv.org/abs/2208.04933). Интересно, что это также повышает и качество на некоторых задачах типа sCIFAR и ListOps. Но кое-где понижает стабильность.

3. Stable Exponential Parameterization. Диагональная матрица репараметризуется как:

Λ = diag(exp(−𝜈 + 𝑖𝜃)), где 𝜈 ∈ ℝ^𝑁 и 𝜃 ∈ ℝ^𝑁 обучаемые параметры взамен действительной и мнимой частей Λ.

Это разъединяет магнитуду и частоту осцилляций и делает работу оптимизатора легче, что уже повышает перформанс.

Также в такой формулировке просто заэнфорсить стабильность собственных значений через нелинейность типа экспоненциальной для каждого из значений j:



group-telegram.com/gonzo_ML/1734
Create:
Last Update:

Resurrecting Recurrent Neural Networks for Long Sequences
Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, Soham De
Статья: https://arxiv.org/abs/2303.06349

Продолжаем про RNN. У нас было про LEM (https://www.group-telegram.com/tr/gonzo_ML.com/857), было про state space models и в частности про S4 (https://www.group-telegram.com/tr/gonzo_ML.com/1424), было про RWKV (https://www.group-telegram.com/tr/gonzo_ML.com/1647). Ещё из сравнительно недавних работ было исследование от DeepMind. Это своего рода возврат к классике.

С RNN долгое время была проблема, что они быстры на инференс, но медленно обучаются в смысле плохо параллелятся, и их сложно обучать на длинных последовательностях. Со свежими state space models (SSM) это в целом уже не так, они и на инференс так же хороши, и обучение их параллелится, и очень длинные последовательности могут обрабатывать. Но они хоть и эквивалентны RNN в режиме инференса, в режиме обучения у них есть важные отличия типа дискретизации непрерывной системы и очень специальной инициализации, про которые, кажется, ещё не до конца ясно, какова механика работы этой кухни.

В текущей работе авторы задаются вопросом, можно ли достичь перформанса глубоких SSM традиционными глубокими RNN (причём ванильными, а не LSTM)? И отвечают, что можно. Достигают этого серией маленьких шагов, и полученную модель называют Linear Recurrent Unit (LRU).

Основные шаги таковы:

0. Vanilla RNN. Пляшем от базовой рекуррентности:

𝑥_𝑘 = 𝜎(𝐴𝑥_{𝑘−1} + 𝐵𝑢_𝑘)
𝑦_𝑘 = 𝐶𝑥_𝑘 + 𝐷𝑢_𝑘

где
(𝑢_1, 𝑢_2, . . . , 𝑢_𝐿) -- входы размерности 𝐻_in,
(𝑦_1, 𝑦_2, . . . , 𝑦_𝐿) -- выходы размерности 𝐻_out,
𝑥_𝑘 -- скрытое состояние размерности N в момент времени k,
A,B,C,D -- матрицы с обучаемыми параметрами

1. Linear Recurrences. Если SSM слои заменить на vanilla RNN, то нелинейности типа tanh или ReLU в рекуррентности приводят к сильной просадке качества. Зато если нелинейности убрать и оставить линейные рекуррентности, то всё существенно улучшается. Рекуррентная формула превращается в

𝑥_𝑘 = 𝐴𝑥_{𝑘−1} + 𝐵𝑢_𝑘.

Это интересный результат, идущий вразрез с массовым пониманием важности нелинейностей. Возможно, это также одна из причин успеха глубоких SSM, где рекуррентность тоже линейная.

Сложные нелинейные отображения при этом можно моделировать соединением линейных RNN слоёв и нелинейных MLP (в этом смысле паттерн аналогичен последовательности слоёв MHSA+MLP в трансформере). В приложении есть отдельный большой интересный раздел вокруг этого.

“any sufficiently regular nonlinear autonomous dynamical system can be made linear under a high-dimensional nonlinear blow-up of the state-space. Sounds familiar? This is exactly what a wide MLP + Linear RNN can do“

2. Complex Diagonal Recurrent Matrices. Линейную рекуррентность уже можно развернуть в легко параллелизуемую сумму. Далее dense linear RNN слои могут быть репараметризованы в комплексную диагональную форму, где матрица A заменяется на:

𝐴 = 𝑃Λ𝑃^{−1},
𝑃 ∈ ℂ^{𝑁×𝑁},
Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑁) ∈ ℂ^{𝑁×𝑁}

Комплексные числа нужны для диагонализации несимметричных матриц. Это не ухудшает выразительность, а диагональность позволяет ещё ускорить хорошо параллелизуемые вычисления.

Проверялись на Long Range Arena (LRA). На sCIFAR диагональная линейная RNN обучалась в 8 раз быстрее обычной с ReLU, и сравнялась по скорости с авторской имплементацией S4D (диагональный вариант S4, https://arxiv.org/abs/2203.14343) и S5 (упрощённый вариант S4, https://arxiv.org/abs/2208.04933). Интересно, что это также повышает и качество на некоторых задачах типа sCIFAR и ListOps. Но кое-где понижает стабильность.

3. Stable Exponential Parameterization. Диагональная матрица репараметризуется как:

Λ = diag(exp(−𝜈 + 𝑖𝜃)), где 𝜈 ∈ ℝ^𝑁 и 𝜃 ∈ ℝ^𝑁 обучаемые параметры взамен действительной и мнимой частей Λ.

Это разъединяет магнитуду и частоту осцилляций и делает работу оптимизатора легче, что уже повышает перформанс.

Также в такой формулировке просто заэнфорсить стабильность собственных значений через нелинейность типа экспоненциальной для каждого из значений j:

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/1734

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups.
from tr


Telegram gonzo-обзоры ML статей
FROM American