Notice: file_put_contents(): Write of 6442 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 14634 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Алексей Хохлов | Telegram Webview: khokhlovAR/872 -
Telegram Group & Telegram Channel
Сегодня в Стокгольме проходит церемония вручения Нобелевских премий 2024 года. Как известно, половина Нобелевской премии по химии присуждена сотрудникам компании Google DeepMind Демису Хассабису и Джону Джамперу, которые разработали исключительно эффективную компьютерную программу AlphaFold2 для предсказания пространственной структуры белков по известной последовательности аминокислотных остатков с использованием инструментов искусственного интеллекта (см. посты от 9 и 14 октября).

На волне этого несомненного успеха сотрудники компания Google DeepMind недавно опубликовали весьма содержательное эссе о перспективах использования возможностей искусственного интеллекта (ИИ) в науке:

https://deepmind.google/public-policy/ai-for-science/

Я прочитал, мне понравилось. Основные проблемы и перспективы развития описаны со знанием дела. Рекомендую ознакомиться. ТГ-канал Innovation & Research разместил русский перевод этого важного документа, который можно скачать по ссылке:

https://www.group-telegram.com/abulaphia/5321

Приведу несколько фрагментов этого эссе (не то, чтобы самых важных, просто для затравки интереса):

Несмотря на значительное расширение научного сообщества за последние полвека (только в США число научных сотрудников выросло более чем в семь раз), темпы общественного прогресса снизились. Современные ученые сталкиваются с рядом проблем, которые все чаще связаны с масштабом и сложностью, начиная с постоянно растущей библиографической базы, которую необходимо проанализировать, и заканчивая все более сложными экспериментами. Современные методы глубинного обучения очень хорошо приспособлены для решения подобных задач.

Если говорить об обнародовании результатов научных исследований, то есть ряд полезных подходов, таких как серверы препринтов и репозитории кодов, однако большинство ученых по-прежнему публикуют свои результаты в виде трудных для понимания научных статей, насыщенных профессиональным жаргоном. Это может скорее охладить, нежели разжечь интерес к работе ученых, в том числе со стороны властей, представителей бизнеса и общественности.

Методы ИИ создают потенциал для того, чтобы кардинально переосмыслить определенные научные задачи, в том числе что значит «читать» или «писать» научную статью в мире, где ученый может использовать Большую Языковую Модель для ее рецензирования, корректировки выводов с учетом аудитории или преобразования в формат интерактивной статьи или аудиогида.

Обычно при поиске оптимальной структуры молекулы, доказательства или алгоритма ученые применяют сочетание интуиции, метода проб и ошибок, итераций или вычислений методом «грубой силы». Однако эти методы не могут охватить огромное пространство возможных решений, и оптимальные варианты остаются неисследованными. ИИ способен открыть доступ к новым областям пространства поиска и в то же время быстрее находить решения, которые с наибольшей вероятностью окажутся действенными.

Системы ИИ способствуют научному пониманию не вопреки своей непрозрачности, а благодаря ей, поскольку эта непрозрачность может быть следствием их способности работать в высокоразмерных пространствах, которые могут быть непостижимы для людей, но необходимы для революционных научных открытий.

Подходы к научным исследованиям в академических кругах и промышленности, как правило, прямо противоположны. В научном сообществе царит демократия, а в промышленных лабораториях — иерархия. Недавно появилась новая волна научно-исследовательских институтов. Такие организации пытаются найти баланс между ориентацией на иерархическую координацию и расширением возможностей для инициативы ученых. Для некоторых организаций это означает сосредоточиться на одной конкретной проблеме с предварительно заданными контрольными точками, а для других — предложить ведущим исследователям более свободное финансирование.



group-telegram.com/khokhlovAR/872
Create:
Last Update:

Сегодня в Стокгольме проходит церемония вручения Нобелевских премий 2024 года. Как известно, половина Нобелевской премии по химии присуждена сотрудникам компании Google DeepMind Демису Хассабису и Джону Джамперу, которые разработали исключительно эффективную компьютерную программу AlphaFold2 для предсказания пространственной структуры белков по известной последовательности аминокислотных остатков с использованием инструментов искусственного интеллекта (см. посты от 9 и 14 октября).

На волне этого несомненного успеха сотрудники компания Google DeepMind недавно опубликовали весьма содержательное эссе о перспективах использования возможностей искусственного интеллекта (ИИ) в науке:

https://deepmind.google/public-policy/ai-for-science/

Я прочитал, мне понравилось. Основные проблемы и перспективы развития описаны со знанием дела. Рекомендую ознакомиться. ТГ-канал Innovation & Research разместил русский перевод этого важного документа, который можно скачать по ссылке:

https://www.group-telegram.com/abulaphia/5321

Приведу несколько фрагментов этого эссе (не то, чтобы самых важных, просто для затравки интереса):

Несмотря на значительное расширение научного сообщества за последние полвека (только в США число научных сотрудников выросло более чем в семь раз), темпы общественного прогресса снизились. Современные ученые сталкиваются с рядом проблем, которые все чаще связаны с масштабом и сложностью, начиная с постоянно растущей библиографической базы, которую необходимо проанализировать, и заканчивая все более сложными экспериментами. Современные методы глубинного обучения очень хорошо приспособлены для решения подобных задач.

Если говорить об обнародовании результатов научных исследований, то есть ряд полезных подходов, таких как серверы препринтов и репозитории кодов, однако большинство ученых по-прежнему публикуют свои результаты в виде трудных для понимания научных статей, насыщенных профессиональным жаргоном. Это может скорее охладить, нежели разжечь интерес к работе ученых, в том числе со стороны властей, представителей бизнеса и общественности.

Методы ИИ создают потенциал для того, чтобы кардинально переосмыслить определенные научные задачи, в том числе что значит «читать» или «писать» научную статью в мире, где ученый может использовать Большую Языковую Модель для ее рецензирования, корректировки выводов с учетом аудитории или преобразования в формат интерактивной статьи или аудиогида.

Обычно при поиске оптимальной структуры молекулы, доказательства или алгоритма ученые применяют сочетание интуиции, метода проб и ошибок, итераций или вычислений методом «грубой силы». Однако эти методы не могут охватить огромное пространство возможных решений, и оптимальные варианты остаются неисследованными. ИИ способен открыть доступ к новым областям пространства поиска и в то же время быстрее находить решения, которые с наибольшей вероятностью окажутся действенными.

Системы ИИ способствуют научному пониманию не вопреки своей непрозрачности, а благодаря ей, поскольку эта непрозрачность может быть следствием их способности работать в высокоразмерных пространствах, которые могут быть непостижимы для людей, но необходимы для революционных научных открытий.

Подходы к научным исследованиям в академических кругах и промышленности, как правило, прямо противоположны. В научном сообществе царит демократия, а в промышленных лабораториях — иерархия. Недавно появилась новая волна научно-исследовательских институтов. Такие организации пытаются найти баланс между ориентацией на иерархическую координацию и расширением возможностей для инициативы ученых. Для некоторых организаций это означает сосредоточиться на одной конкретной проблеме с предварительно заданными контрольными точками, а для других — предложить ведущим исследователям более свободное финансирование.

BY Алексей Хохлов




Share with your friend now:
group-telegram.com/khokhlovAR/872

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels.
from tr


Telegram Алексей Хохлов
FROM American