Warning: file_put_contents(aCache/aDaily/post/nlpwanderer/-69-70-71-72-): Failed to open stream: No space left on device in /var/www/group-telegram/post.php on line 50
NLP Wanderer | Telegram Webview: nlpwanderer/71 -
Telegram Group & Telegram Channel
Forwarded from rizzearch
ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate

на определенном этапе заведения модели, которая не заводится, начинаешь задумываться про гиперы, которые стоят за оптимизатором (помимо лернинг рейта) и самого оптимизатора. например, на беты

и как мы уже упоминали, в то время как первая бета отвечает за сохранение градиентов для первого момента, вторая бета отвечает за сохранение истории в бегущем среднем вторых моментов градиента (что логично). и с точки зрения теории адам (да и в принципе все адаптивные методы) довольно плохо сходится, если только не выбирать эту вторую бету в зависимости от поставленной

но вот авторы-японцы (возможно) смогли это исправить и нескромно назвали метод ADaptive gradient method with the OPTimal convergence rate

и вот для того, чтобы вторая бета не имела такой сильный импакт на сходимость, они к удивлению меняют расчет первого момента - дополнительно делят градиент на данном таймстепе на корень из второго момента. простенько, со вкусом, достаточно нетривиально для данной специфики

по экспам где-то даже резы лучше достигаются - в том числе и на 7б лламе прогоняли (правда только ммлу, как любит замечать наш дорогой друг, без алаймент бенчмарков это не особо релевантно) + для мниста и цифара брали только резнет-18 но допууууустим

к тому же тут есть тоже предположение в их теории - о том что второй момент градиентов ограничен (менее сильное предположение в сравнении с предыдущим о том, что первый момент тож ограничен)

позабавило еще то, что в вывод в конце они зачем-то решили вставить проблему социального импакта мл алгоритмов (хотя статья чисто про оптимизатор)

а код оч классный, челики с сурс коде торча знатно так разбираются

👀LINK



group-telegram.com/nlpwanderer/71
Create:
Last Update:

ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate

на определенном этапе заведения модели, которая не заводится, начинаешь задумываться про гиперы, которые стоят за оптимизатором (помимо лернинг рейта) и самого оптимизатора. например, на беты

и как мы уже упоминали, в то время как первая бета отвечает за сохранение градиентов для первого момента, вторая бета отвечает за сохранение истории в бегущем среднем вторых моментов градиента (что логично). и с точки зрения теории адам (да и в принципе все адаптивные методы) довольно плохо сходится, если только не выбирать эту вторую бету в зависимости от поставленной

но вот авторы-японцы (возможно) смогли это исправить и нескромно назвали метод ADaptive gradient method with the OPTimal convergence rate

и вот для того, чтобы вторая бета не имела такой сильный импакт на сходимость, они к удивлению меняют расчет первого момента - дополнительно делят градиент на данном таймстепе на корень из второго момента. простенько, со вкусом, достаточно нетривиально для данной специфики

по экспам где-то даже резы лучше достигаются - в том числе и на 7б лламе прогоняли (правда только ммлу, как любит замечать наш дорогой друг, без алаймент бенчмарков это не особо релевантно) + для мниста и цифара брали только резнет-18 но допууууустим

к тому же тут есть тоже предположение в их теории - о том что второй момент градиентов ограничен (менее сильное предположение в сравнении с предыдущим о том, что первый момент тож ограничен)

позабавило еще то, что в вывод в конце они зачем-то решили вставить проблему социального импакта мл алгоритмов (хотя статья чисто про оптимизатор)

а код оч классный, челики с сурс коде торча знатно так разбираются

👀LINK

BY NLP Wanderer







Share with your friend now:
group-telegram.com/nlpwanderer/71

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said.
from tr


Telegram NLP Wanderer
FROM American