group-telegram.com/razno_boy/260
Last Update:
Прорыв в функциональном анализе в начале пятидесятых связан с работами Сергея Львовича Соболева и Лорана Шварца (маленький исторический обзор). Они исследовали пространства обобщённых функций, распределений, и доказали мощные теоремы о существовании решений PDE, которыми математики пользуются по сей день.
На другом конце света Микио Сато (интервью), вдохновлённый школой Гротендика, которая как раз в это время производила революцию в алгебраической геометрии, решил, что бесконечномерные банаховы пространства распределений не отвечают духу времени. Сато создавал алгебраическую теорию обобщённых функций, которые он назвал гиперфункциями.
Киотская школа: Сато, его ученики Масаки Кашивара, Такахиро Кавай, позднее Тэцудзи Мива, Мичио Джимбо развили теорию гиперфункций, которая со временем переросла в микролокальный анализ и, с помощью Пьера Шапира, в микролокальную теорию пучков, см. очень хороший недавний обзор (Шапира, 2017).
Сегодня микролокальный взгляд на конструктивные пучки в сущности стал общим знанием. Он проник и прижился в теории PDE, симплектической топологии, зеркальной симметрии и смежных областях.
На этот текст меня вдохновил чудесный доклад Roger Casals о его открытии важности микролокальной теории для изучения лагранжевых узлов. Они обнаружили, что на стеке модулей конструктивных пучков на плоскости с микролокальным носителем на данном лежандровом узле есть структура кластерного многообразия, что позволяет строить бесконечно много лагранжевых заполнений узла с помощью кластерных мутаций. Доклад абсолютно прекрасный и довольно элементарный.
BY Матразнобой
Share with your friend now:
group-telegram.com/razno_boy/260