Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ruadaptnaya/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Ruadaptная комната | Telegram Webview: ruadaptnaya/11 -
Telegram Group & Telegram Channel
Learned Embedding Propagation (LEP) + анонс релиза RuadaptQwQ-32B

Расскажу немного подробнее про идею, которая стоит за текущими версиями Ruadapt моделей. Наше предыдущее решение требовало после адаптации базовых версий моделей дополнительно их дообучать по сути с “базы”, из-за чего терялись многие успешные инструктивные версии моделей, которые нельзя просто взять и воспроизвести из-за отсутствия обучающих данных (те же 10 миллионов инструкций LLaMa-3 не были открыты комьюнити). Другим ярким примером может послужить недавняя Qwen/QwQ-32B-Preview, так как не понятно как ее учили и на каких данных.

Тут то на помощь и приходит предложенный нами метод Learned Embedding Propagation (LEP). Идея метода состоит из 3 шагов:
1. На первом шаге мы также адаптируем исходную базовую модель
2 . На втором шаге мы рассчитываем проекцию из исходной базы в целевую исходную инструктивную версию (например, из Qwen/Qwen2.5-32B 🔜 Qwen/Qwen2.5-32B-Instruct)
3. На третьем шаге мы применяем данную проекцию 🔜на Ruadapt версию базы!
4. На самом деле есть еще 4-й шаг, по сути очень важный, это шаг калибровки / дообучения, но он “опционален”

В итоге, после 3 шага мы по сути имеем адаптированную инструктивную версию модели, и при этом она не сломалась и работает весьма успешно уже на новой токенизации, но из-за неточностей отображения качество несколько просаживается и могут быть новые артефакты. Поэтому все модели, которые мы выкладывали ранее, дополнительно калибровались/дообучались на открытых инструктивных данных, таких как saiga_scored.

А теперь обращу внимание вот на что.

Самое дорогое - это как раз первый шаг, адаптация базовой версии модели и в этом шаге нигде не используется никакая информация о будущей инструктивной версии, а значит, адаптировав базу и применяя LEP, мы можем адаптировать модель на любую инструктивную версию с этой базы!

И вот возьмем, недавно вышедшую Qwen/QwQ-32B-Preview, несмотря на то, что мы вообще не знаем как и на чем она обучалась, мы знаем, что ее базой является, Qwen/Qwen2.5-32B, поэтому мы легко можем сделать версию RuadaptQwQ-32B-Preview-LEP. С шагом 4 тут посложнее, так как хороших данных для подобного типа моделей я пока что не видел. На текущий момент предлагаю попробовать RuadaptQwQ-32B-Preview-LEP в поднятом Space (https://huggingface.co/spaces/RefalMachine/RuadaptQwen2.5), но обращаю внимание, это модель сразу после LEP, без дополнительных шагов дообучения, да и тестирования особо никакого с этой моделью пока не производилось.

Соответственно релиз RuadaptQwQ в планах, но через какое-то время. Буду рад фидбеку по любой из наших моделей в комментариях к посту или другим любым способом.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ruadaptnaya/11
Create:
Last Update:

Learned Embedding Propagation (LEP) + анонс релиза RuadaptQwQ-32B

Расскажу немного подробнее про идею, которая стоит за текущими версиями Ruadapt моделей. Наше предыдущее решение требовало после адаптации базовых версий моделей дополнительно их дообучать по сути с “базы”, из-за чего терялись многие успешные инструктивные версии моделей, которые нельзя просто взять и воспроизвести из-за отсутствия обучающих данных (те же 10 миллионов инструкций LLaMa-3 не были открыты комьюнити). Другим ярким примером может послужить недавняя Qwen/QwQ-32B-Preview, так как не понятно как ее учили и на каких данных.

Тут то на помощь и приходит предложенный нами метод Learned Embedding Propagation (LEP). Идея метода состоит из 3 шагов:
1. На первом шаге мы также адаптируем исходную базовую модель
2 . На втором шаге мы рассчитываем проекцию из исходной базы в целевую исходную инструктивную версию (например, из Qwen/Qwen2.5-32B 🔜 Qwen/Qwen2.5-32B-Instruct)
3. На третьем шаге мы применяем данную проекцию 🔜на Ruadapt версию базы!
4. На самом деле есть еще 4-й шаг, по сути очень важный, это шаг калибровки / дообучения, но он “опционален”

В итоге, после 3 шага мы по сути имеем адаптированную инструктивную версию модели, и при этом она не сломалась и работает весьма успешно уже на новой токенизации, но из-за неточностей отображения качество несколько просаживается и могут быть новые артефакты. Поэтому все модели, которые мы выкладывали ранее, дополнительно калибровались/дообучались на открытых инструктивных данных, таких как saiga_scored.

А теперь обращу внимание вот на что.

Самое дорогое - это как раз первый шаг, адаптация базовой версии модели и в этом шаге нигде не используется никакая информация о будущей инструктивной версии, а значит, адаптировав базу и применяя LEP, мы можем адаптировать модель на любую инструктивную версию с этой базы!

И вот возьмем, недавно вышедшую Qwen/QwQ-32B-Preview, несмотря на то, что мы вообще не знаем как и на чем она обучалась, мы знаем, что ее базой является, Qwen/Qwen2.5-32B, поэтому мы легко можем сделать версию RuadaptQwQ-32B-Preview-LEP. С шагом 4 тут посложнее, так как хороших данных для подобного типа моделей я пока что не видел. На текущий момент предлагаю попробовать RuadaptQwQ-32B-Preview-LEP в поднятом Space (https://huggingface.co/spaces/RefalMachine/RuadaptQwen2.5), но обращаю внимание, это модель сразу после LEP, без дополнительных шагов дообучения, да и тестирования особо никакого с этой моделью пока не производилось.

Соответственно релиз RuadaptQwQ в планах, но через какое-то время. Буду рад фидбеку по любой из наших моделей в комментариях к посту или другим любым способом.

BY Ruadaptная комната




Share with your friend now:
group-telegram.com/ruadaptnaya/11

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981.
from tr


Telegram Ruadaptная комната
FROM American