Notice: file_put_contents(): Write of 14076 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50 какая-то библиотека | Telegram Webview: selfmadeLibrary/776 -
ChatGPT опять наврал? Расследование на примере ANOVA-теста
Я обожаю экспериментировать с ИИ в своей аналитической работе. Скорость — это здорово, но для меня точность — абсолютный приоритет. К сожалению, ИИ ошибается, и я регулярно сталкиваюсь с этим.
Проверять всё вручную — нереально при объёме моих задач, поэтому я постоянно ищу способы валидации результатов прямо в процессе работы с промптами.
Вот один из моих экспериментов: я решила протестировать возможности ChatGPT в анализе данных с помощью ANOVA-теста. Задача была простая — на представленном дата-сете оценить влияние разных моделей напоминаний в мобильном приложении на количество опозданий студентов на занятия.
🔤 Как я проверяла результаты?
1️⃣Я специально сформулировала промпты так, чтобы ChatGPT не только провел тест, но и подробно описал каждый шаг расчета, включая формулы и промежуточные результаты. 2️⃣Более того, я попросила его выполнить ANOVA-тест тремя разными способами: используя стандартную функцию из библиотеки scipy.stats, вручную и с помощью матричного подхода. ▶️Это был своего рода тест на вшивость. Цель — убедиться в корректности работы ИИ, сравнив результаты разных методов.
Все три варианта дали удивительно похожие результаты: p-значение значительно превысило 0.05, что подтвердило гипотезу об отсутствии статистически значимой разницы между моделями напоминаний.
Конечно, данные в этом примере были выдуманные, и поэтому на практике результат не столь важен. Но сам подход к валидации, — именно его я хочу подчеркнуть.
🐈⬛Убедили ли бы меня такие результаты в корректности расчетов ИИ? Да, в данном случае — безусловно. Совпадение результатов, полученных тремя разными методами, — это весомый аргумент в пользу достоверности выводов. А вас?
ChatGPT опять наврал? Расследование на примере ANOVA-теста
Я обожаю экспериментировать с ИИ в своей аналитической работе. Скорость — это здорово, но для меня точность — абсолютный приоритет. К сожалению, ИИ ошибается, и я регулярно сталкиваюсь с этим.
Проверять всё вручную — нереально при объёме моих задач, поэтому я постоянно ищу способы валидации результатов прямо в процессе работы с промптами.
Вот один из моих экспериментов: я решила протестировать возможности ChatGPT в анализе данных с помощью ANOVA-теста. Задача была простая — на представленном дата-сете оценить влияние разных моделей напоминаний в мобильном приложении на количество опозданий студентов на занятия.
🔤 Как я проверяла результаты?
1️⃣Я специально сформулировала промпты так, чтобы ChatGPT не только провел тест, но и подробно описал каждый шаг расчета, включая формулы и промежуточные результаты. 2️⃣Более того, я попросила его выполнить ANOVA-тест тремя разными способами: используя стандартную функцию из библиотеки scipy.stats, вручную и с помощью матричного подхода. ▶️Это был своего рода тест на вшивость. Цель — убедиться в корректности работы ИИ, сравнив результаты разных методов.
Все три варианта дали удивительно похожие результаты: p-значение значительно превысило 0.05, что подтвердило гипотезу об отсутствии статистически значимой разницы между моделями напоминаний.
Конечно, данные в этом примере были выдуманные, и поэтому на практике результат не столь важен. Но сам подход к валидации, — именно его я хочу подчеркнуть.
🐈⬛Убедили ли бы меня такие результаты в корректности расчетов ИИ? Да, в данном случае — безусловно. Совпадение результатов, полученных тремя разными методами, — это весомый аргумент в пользу достоверности выводов. А вас?
During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram.
from tr