group-telegram.com/sweet_homotopy/1935
Last Update:
Как настроиться на праздник? Вспомнить, что конечнопорожденные модули над областями главных идеалов* устроены как никогда приятно:
Теорема: пусть k — ОГИ, M — к.п. k-модуль. Тогда M раскладывается в прямую сумму циклических модулей:
M = k/(d_1)⊕k/(d_2)⊕..⊕k/(d_n),
d_1,..,d_n ∈ k,
причём:
1) d_i делит d_{i+1} для каждого i;
2) все d_i необратимы.
Более того: если взять два таких разложения, то в них
3) число n одно и то же;
4) соответствующие d_i пропорциональны (отличаются на обратимый элемент).
Среди элементов d_i первые s ненулевые, а последние n-s штук равны нулю (возможно, s=0 или s=n). То есть у нас n-s свободных прямых слагаемых и s слагаемых "кручения". Из теоремы следует, что числа s и n определены однозначно. Мне сегодня хочется обозначить
n = gen(M), s = rel(M).
Другая точка зрения: есть короткая точная последовательность k-модулей
k^rel(M) -> k^gen(M) -> M -> 0,
которую "нельзя уменьшить".
[действительно: если
k^s' -f-> k^n' -> M -> 0,
то можно привести f к нормальной форме Смита. Это задаст изоморфизм как в теореме выше; только, возможно, добавятся тривиальные прямые слагаемые вида k/(1). Получим s'=rel(M)+p, n'=gen(M)+q для каких-то p≥q≥0.]
Вопрос. Пусть k — коммутативное кольцо с единицей. Зафиксируем k-модуль M. Рассмотрим все пары (n,s) такие, что существует короткая точная последовательность
k^s -> k^n -> M -> 0.
Как мы убедились выше, для ОГИ получается "треугольник"
{(gen(M)+p, rel(M)+q): q≥p≥0}.
А насколько всё сложно для произвольного k? Например:
(а) Правда ли, что если n1≥n2, то s1≥s2?
(б) Правда ли, что n и s минимизируются одновременно?
*Пусть k — коммутативное кольцо с единицей.
k — кольцо главных идеалов, если любой идеал главный.
k — область целостности, если нет делителей нуля.
k — область главных идеалов, если это одновременно кольцо главных идеалов и область целостности
BY сладко стянул
Share with your friend now:
group-telegram.com/sweet_homotopy/1935