Telegram Group & Telegram Channel
Минутка гомотопической суеты

Я пойду дорогой той где никто не проходил


Будем говорить, что пространство X имеет конечный тип, если все группы π_n(X) конечно порождены. (Если X односвязно, то гомотопические группы можно заменить на целочисленные гомологии, а ещё тогда у X есть CW-модель, у которой в каждой размерности конечное число клеток.)

Определим четыре класса:

W := класс односвязных топологических пространств конечного типа, гомотопически эквивалентных букетам сфер;

P+ := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям сфер и петель на сферах;

P := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям S^1, S^3, S^7 и петель на сферах;

P- := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям петель на сферах.

(Здесь "петли на сферах" — это пространства вида ΩS^n. Все произведения и букеты могут быть бесконечными, но из слов "конечного типа" следует, что в каждой размерности их конечное число. Например, всякое пространство из W выглядит как букет, содержащий для каждого n>1 по B_n копий n-мерной сферы, где B_n≥0 любые конечные)



group-telegram.com/sweet_homotopy/2032
Create:
Last Update:

Минутка гомотопической суеты

Я пойду дорогой той где никто не проходил


Будем говорить, что пространство X имеет конечный тип, если все группы π_n(X) конечно порождены. (Если X односвязно, то гомотопические группы можно заменить на целочисленные гомологии, а ещё тогда у X есть CW-модель, у которой в каждой размерности конечное число клеток.)

Определим четыре класса:

W := класс односвязных топологических пространств конечного типа, гомотопически эквивалентных букетам сфер;

P+ := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям сфер и петель на сферах;

P := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям S^1, S^3, S^7 и петель на сферах;

P- := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям петель на сферах.

(Здесь "петли на сферах" — это пространства вида ΩS^n. Все произведения и букеты могут быть бесконечными, но из слов "конечного типа" следует, что в каждой размерности их конечное число. Например, всякое пространство из W выглядит как букет, содержащий для каждого n>1 по B_n копий n-мерной сферы, где B_n≥0 любые конечные)

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2032

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. In 2018, Russia banned Telegram although it reversed the prohibition two years later. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Telegram Messenger Blocks Navalny Bot During Russian Election Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred."
from tr


Telegram сладко стянул
FROM American