Telegram Group & Telegram Channel
Долго забывала написать в паблике про препринт статьи "Improving Interpretability and Robustness for the Detection of AI-Generated Images", над которым мы работали совместно с Таней ( @dl_stories ), а также с Германом ( @junkyardmathml ) и другими коллегами, но сегодня, наконец, исправляюсь. 🧐
В данной работе было сделано несколько наблюдений про детекцию искусственно сгенерированных изображений с помощью эмбеддингов модели CLIP:

1️⃣ Допустим, у нас есть: A - набор картинок, на которых обучалась заданная генеративная модель (т.е. какой-нибудь GAN или Diffusion Model) и B - набор картинок, которые эта модель сгенерировала. Далее эти картинки можно подать на вход CLIP и извлечь из его последнего слоя эмбеддинги, соответствующие картинкам: A' и B'. Так вот, для каждого отдельного генератора, который мы рассмотрели, эти эмбеддинги оказывались линейно разделимыми с достаточно большой точностью, но при этом у разных генераторов разделяющая плоскость проводилась по-разному, что являлось причиной проблем с робастностью классификатора на этих эмбеддингах. Рассмотрев отрезок, соединяющий центроиды кластеров A' и B' для какого-то генератора ("Residual" на рис. 1), можно понять причины того, почему так происходит.
Как мы помним, пространство эмбеддингов CLIP является общим для картинок и текстов, так что для каждого вектора в этом пространстве можно найти текст, который ближе всего к нему по смыслу. И если рассмотреть тексты, которые ближе всего по смыслу к Residual-ам, то можно понять, в чем конкретно заключается отличительная особенность картинок, сделанных каждым генератором. У некоторых генераторов ближайший текст так и будет выглядеть как "generated photo", у других ближайший текст - это что-то на тему детальности или цветовой гаммы картинок (например, что-нибудь про "vibrant" и "detailed") и т.д. Таким образом, мы показали простой способ интерпретировать работу классификатора сгенерированных картинок на эмбеддингах.

2️⃣ Мы также обнаружили, что некоторые компоненты финального эмбеддинга CLIP хранят в себе информацию, которая важна для детекции конкретного генератора (или конкретного типа генераторов, например, GANов), но уменьшает качество переноса детектора на другой генератор. Если найти и удалить эти компоненты, то можно существенно улучшить робастность классификатора при изменении генерирующей модели. Особенно интересно, что получилось улучшить переносимость классификатора с детекции генераторов-диффузий на детекцию генераторов-GANов (и обратно).

3️⃣ Кроме того, оказалось, что некоторые головы внимания CLIP выделяют более полезные для робастной классификации фичи, чем другие. С помощью этого наблюдения тоже можно выудить из CLIP-а информацию, которая позволяет классифицировать картинки более робастно, чем это делал стандартный классификатор на эмбеддингах CLIP. И здесь тоже можно улучшить переносимость классификатора с детекции генераторов-диффузий на детекцию генераторов-GANов и наоборот.

В общем, такой вот вклад в улучшение интерпретируемости и робастности детекции сгенерированных изображений. Ну а я пошла дальше траву трогать. 🏃🏕🌳

#объяснения_статей
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/tech_priestess/1648
Create:
Last Update:

Долго забывала написать в паблике про препринт статьи "Improving Interpretability and Robustness for the Detection of AI-Generated Images", над которым мы работали совместно с Таней ( @dl_stories ), а также с Германом ( @junkyardmathml ) и другими коллегами, но сегодня, наконец, исправляюсь. 🧐
В данной работе было сделано несколько наблюдений про детекцию искусственно сгенерированных изображений с помощью эмбеддингов модели CLIP:

1️⃣ Допустим, у нас есть: A - набор картинок, на которых обучалась заданная генеративная модель (т.е. какой-нибудь GAN или Diffusion Model) и B - набор картинок, которые эта модель сгенерировала. Далее эти картинки можно подать на вход CLIP и извлечь из его последнего слоя эмбеддинги, соответствующие картинкам: A' и B'. Так вот, для каждого отдельного генератора, который мы рассмотрели, эти эмбеддинги оказывались линейно разделимыми с достаточно большой точностью, но при этом у разных генераторов разделяющая плоскость проводилась по-разному, что являлось причиной проблем с робастностью классификатора на этих эмбеддингах. Рассмотрев отрезок, соединяющий центроиды кластеров A' и B' для какого-то генератора ("Residual" на рис. 1), можно понять причины того, почему так происходит.
Как мы помним, пространство эмбеддингов CLIP является общим для картинок и текстов, так что для каждого вектора в этом пространстве можно найти текст, который ближе всего к нему по смыслу. И если рассмотреть тексты, которые ближе всего по смыслу к Residual-ам, то можно понять, в чем конкретно заключается отличительная особенность картинок, сделанных каждым генератором. У некоторых генераторов ближайший текст так и будет выглядеть как "generated photo", у других ближайший текст - это что-то на тему детальности или цветовой гаммы картинок (например, что-нибудь про "vibrant" и "detailed") и т.д. Таким образом, мы показали простой способ интерпретировать работу классификатора сгенерированных картинок на эмбеддингах.

2️⃣ Мы также обнаружили, что некоторые компоненты финального эмбеддинга CLIP хранят в себе информацию, которая важна для детекции конкретного генератора (или конкретного типа генераторов, например, GANов), но уменьшает качество переноса детектора на другой генератор. Если найти и удалить эти компоненты, то можно существенно улучшить робастность классификатора при изменении генерирующей модели. Особенно интересно, что получилось улучшить переносимость классификатора с детекции генераторов-диффузий на детекцию генераторов-GANов (и обратно).

3️⃣ Кроме того, оказалось, что некоторые головы внимания CLIP выделяют более полезные для робастной классификации фичи, чем другие. С помощью этого наблюдения тоже можно выудить из CLIP-а информацию, которая позволяет классифицировать картинки более робастно, чем это делал стандартный классификатор на эмбеддингах CLIP. И здесь тоже можно улучшить переносимость классификатора с детекции генераторов-диффузий на детекцию генераторов-GANов и наоборот.

В общем, такой вот вклад в улучшение интерпретируемости и робастности детекции сгенерированных изображений. Ну а я пошла дальше траву трогать. 🏃🏕🌳

#объяснения_статей

BY Техножрица 👩‍💻👩‍🏫👩‍🔧




Share with your friend now:
group-telegram.com/tech_priestess/1648

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events."
from tr


Telegram Техножрица 👩‍💻👩‍🏫👩‍🔧
FROM American