Notice: file_put_contents(): Write of 8613 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 16805 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
АДовый рисёрч | Telegram Webview: ad_research/114 -
Telegram Group & Telegram Channel
#статистика_для_котиков

Ты ешь капусту, твой начальник мясо, а в среднем вы едите голубцы

Привет, коллега!

В прошлый раз мы формировали выборки, а значит настало время описательной статистики. И в ней принято различать меры центральной тенденции, то есть параметры, характеризующие центр распределения данных выборки.

▶️ Среднее арифметическое. Величина, знакомая всем ещё со школы. Не рекомендуется к использованию на дискретных данных, иначе можно случайно получить полтора землекопа. Среднее является очень коварной величиной, если распределение имеет ассиметричную форму, то есть больших или малых значений в нём больше. И также среднее очень чувствительно к выбросам. Допустим, у нас есть небольшая лаборатория, заведующий которой имеет зарплату 500к рублей, ведущий научный сотрудник получает 60к, младший - 40к, а два лаборанта - 10к. Средняя зарплата составит 124 тысячи, вполне можно жить и публиковать в отчётах. Но есть нюанс 🤔

▶️ Медиана. Представляет собой значение, при котором половина выборки больше него и половина выборки меньше. Гораздо меньше чувствительна к выбросам и лучше показывает центр несимметричного распределения. В нашем гипотетическом институте медиана будет равна 40 тысячам рублей. Уже не так радужно, поэтому медианные зарплаты в отчётах не любят 😰

▶️ Мода. Наиболее часто встречающееся значение в выборке. Единственная из всех мер, которая может применяться к качественным данным. Но в целом, биологами мода используется не очень часто ввиду малого размера выборок: на таких повторения значений редки, а если и случаются, то не всегда в центре распределения. В вышеупомянутом институте моду задают лаборанты и она будет равна 10 тысячам рублей.

Это три самые популярные меры центральной тенденции. Но что если я скажу тебе, что существуют и другие? Например,

▶️ Среднее геометрическое. Используется для расчёта среднего роста или изменения показателя во времени, когда важна пропорциональность. Возьмём нашего младшего научного сотрудника с зарплатой в 40к. Когда он три года назад устраивался на работу его зарплата была 35к. После первого года её проиндексировали на 7%, на второй год ещё на 4%, а в этом на 3%. Можно подумать, что среднегодовой прирост зарплаты составляет 4,7%, но на самом деле он равен 4.4%. Мелочь, а неприятно.

▶️ Среднее гармоническое. Используется, если есть отличия в характеристиках значений. Допустим, наши лаборанты работают 4 часа, а несчастный завлаб пашет 14 часов. Можно, конечно, посчитать среднее арифметическое от почасовой оплаты (472 руб/час), но среднее гармоническое будет корректнее (191 руб/час), поскольку оно учитывает, что большая часть часов оплачивается по меньшей ставке. Опять лаборанты испортили статистику по оплате труда в лаборатории 👊

▶️ Среднее взвешенное. Используют, если разные величины имеют разную важность. Бухгалтеры считают средневзвешенную зарплату вместо обычной средней арифметической, чтобы учитывать количество человек на более низкооплачиваемых должностях. В нашем случае средневзвешенная зарплата составит 122 тысячи рублей. Всё ещё не так плохо, как медиана и мода, потому что лаборанта с низкой зп всего два. Я, кстати, использую среднее взвешенное для расчёта оценки за доклады: оценке преподавателя присваивается больший вес по сравнению со студентами. Тогда даже если вся группа сговорилась и ставит 100 баллов друг другу - мнение преподавателя всё равно перевесит. Кстати, "веса" можно добавлять не только в расчёт среднего арифметического, как это сделала я в примерах выше, но и в формулы других средних.

▶️ Среднее квадратическое. В статистике чаще используется для расчёта отклонений и называется среднеквадратичным (стандартным) отклонением. Это характеризует разброс данных, что в целом является спойлером к следующему посту.

Так что ставь реакцию и подписывайся, если хочешь узнать, какие меры разброса существуют 😏
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ad_research/114
Create:
Last Update:

#статистика_для_котиков

Ты ешь капусту, твой начальник мясо, а в среднем вы едите голубцы

Привет, коллега!

В прошлый раз мы формировали выборки, а значит настало время описательной статистики. И в ней принято различать меры центральной тенденции, то есть параметры, характеризующие центр распределения данных выборки.

▶️ Среднее арифметическое. Величина, знакомая всем ещё со школы. Не рекомендуется к использованию на дискретных данных, иначе можно случайно получить полтора землекопа. Среднее является очень коварной величиной, если распределение имеет ассиметричную форму, то есть больших или малых значений в нём больше. И также среднее очень чувствительно к выбросам. Допустим, у нас есть небольшая лаборатория, заведующий которой имеет зарплату 500к рублей, ведущий научный сотрудник получает 60к, младший - 40к, а два лаборанта - 10к. Средняя зарплата составит 124 тысячи, вполне можно жить и публиковать в отчётах. Но есть нюанс 🤔

▶️ Медиана. Представляет собой значение, при котором половина выборки больше него и половина выборки меньше. Гораздо меньше чувствительна к выбросам и лучше показывает центр несимметричного распределения. В нашем гипотетическом институте медиана будет равна 40 тысячам рублей. Уже не так радужно, поэтому медианные зарплаты в отчётах не любят 😰

▶️ Мода. Наиболее часто встречающееся значение в выборке. Единственная из всех мер, которая может применяться к качественным данным. Но в целом, биологами мода используется не очень часто ввиду малого размера выборок: на таких повторения значений редки, а если и случаются, то не всегда в центре распределения. В вышеупомянутом институте моду задают лаборанты и она будет равна 10 тысячам рублей.

Это три самые популярные меры центральной тенденции. Но что если я скажу тебе, что существуют и другие? Например,

▶️ Среднее геометрическое. Используется для расчёта среднего роста или изменения показателя во времени, когда важна пропорциональность. Возьмём нашего младшего научного сотрудника с зарплатой в 40к. Когда он три года назад устраивался на работу его зарплата была 35к. После первого года её проиндексировали на 7%, на второй год ещё на 4%, а в этом на 3%. Можно подумать, что среднегодовой прирост зарплаты составляет 4,7%, но на самом деле он равен 4.4%. Мелочь, а неприятно.

▶️ Среднее гармоническое. Используется, если есть отличия в характеристиках значений. Допустим, наши лаборанты работают 4 часа, а несчастный завлаб пашет 14 часов. Можно, конечно, посчитать среднее арифметическое от почасовой оплаты (472 руб/час), но среднее гармоническое будет корректнее (191 руб/час), поскольку оно учитывает, что большая часть часов оплачивается по меньшей ставке. Опять лаборанты испортили статистику по оплате труда в лаборатории 👊

▶️ Среднее взвешенное. Используют, если разные величины имеют разную важность. Бухгалтеры считают средневзвешенную зарплату вместо обычной средней арифметической, чтобы учитывать количество человек на более низкооплачиваемых должностях. В нашем случае средневзвешенная зарплата составит 122 тысячи рублей. Всё ещё не так плохо, как медиана и мода, потому что лаборанта с низкой зп всего два. Я, кстати, использую среднее взвешенное для расчёта оценки за доклады: оценке преподавателя присваивается больший вес по сравнению со студентами. Тогда даже если вся группа сговорилась и ставит 100 баллов друг другу - мнение преподавателя всё равно перевесит. Кстати, "веса" можно добавлять не только в расчёт среднего арифметического, как это сделала я в примерах выше, но и в формулы других средних.

▶️ Среднее квадратическое. В статистике чаще используется для расчёта отклонений и называется среднеквадратичным (стандартным) отклонением. Это характеризует разброс данных, что в целом является спойлером к следующему посту.

Так что ставь реакцию и подписывайся, если хочешь узнать, какие меры разброса существуют 😏

BY АДовый рисёрч




Share with your friend now:
group-telegram.com/ad_research/114

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events."
from tw


Telegram АДовый рисёрч
FROM American