MAS: Multi-view Ancestral Sampling for 3D motion generation using 2D diffusion
Тут подвезли диффузию для генерации 3d motion любых персонажей (людей и животных), обучаясь только на 2D данных!
Качественных Mocap 3D данных движения людей и животных очень мало. Например, их почти нет для таких видов спорта как баскетбол или танцев, а уж тем более для животных. Причина тому — дороговизна и недобство сбора таких данных (нужно оборудование, нацеплять трекеры на тело и тд.). А генерировать 3D motion очень хочется - например для анимации, игр и VR.
В этой статье предлагается научить дифуузию генерить 2d траектории движения, а затем использовать эту сетку, чтобы генерить 2d проекции трехмерного моушена с разных камер. Чтобы проекции были консистентными предлагается дополнительной блок, который после каждого шага диффузии решает задачу оптимизации и находит ближайший 3D скелет, который лучше всего удовлетворяет всем проекциям, затем это решение опять проецируется на все камеры и кормится в следующий шаг дифуузии. В итоге на выходе имеет полноценный 3D моушен, хотя в тренировке модель никода не видела 3D!
MAS: Multi-view Ancestral Sampling for 3D motion generation using 2D diffusion
Тут подвезли диффузию для генерации 3d motion любых персонажей (людей и животных), обучаясь только на 2D данных!
Качественных Mocap 3D данных движения людей и животных очень мало. Например, их почти нет для таких видов спорта как баскетбол или танцев, а уж тем более для животных. Причина тому — дороговизна и недобство сбора таких данных (нужно оборудование, нацеплять трекеры на тело и тд.). А генерировать 3D motion очень хочется - например для анимации, игр и VR.
В этой статье предлагается научить дифуузию генерить 2d траектории движения, а затем использовать эту сетку, чтобы генерить 2d проекции трехмерного моушена с разных камер. Чтобы проекции были консистентными предлагается дополнительной блок, который после каждого шага диффузии решает задачу оптимизации и находит ближайший 3D скелет, который лучше всего удовлетворяет всем проекциям, затем это решение опять проецируется на все камеры и кормится в следующий шаг дифуузии. В итоге на выходе имеет полноценный 3D моушен, хотя в тренировке модель никода не видела 3D!
The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts.
from tw