Telegram Group & Telegram Channel
Опенсорса много не бывает. Сегодня VK запустил инициативу OpenVK, в рамках которой будет выкладывать в open source свои проекты по нескольким направлениям, включая ИИ. Пока основной площадкой будет GitHub, но в перспективе компания готовится работать и с отечественными Git-платформами.

На старте разработчики опубликовали исходный код платформы Tarantool для создания высоконагруженных приложений, системы StatsHouse для визуализации данных для мониторинга, дизайн-системы VKUI для создания удобных интерфейсов и ряд других. А оформлено всё это как у Яндекса, на отдельном лендинге со ссылками и описанием (хотя источники вдохновения у обоих понятно какие).

🤖 В OpenVK также будут доступны ИИ-модели и библиотеки для их создания. Но о собственной open source LLM пока речи не идёт, что выглядит удивительно после того парада моделей, который мы наблюдали в исполнении MTS AI, Т-Банка и Сбера. Кажется, как и в Яндексе, в VK свои карты раскрывать не спешат.

Зато уже доступна модель EmoSpeech для синтеза речи, обученная на фонемных последовательностях. Она позволяет придать искусственной речи правильные эмоциональные оттенки при озвучке текста нейросетями. Интегрировать решение можно с любой моделью Text-to-Speech, а при наличии датасета — обучить работе с нужным языком (по умолчанию работает только с английским).

У Яндекса тоже есть инструмент для генерации речи, но в открытый доступ компания выложила не его исходный код, а свои правила работы с технологией. Но там речь всё-таки идёт о вопросах взаимодействия с реальными дикторами и генерации контента с их голосами.

💻 Отдельно отметим, что среди опенсорс-разработок VK также будут доступны энкодеры. Их используют для задач обработки естественного языка, таких как классификация и семантический поиск. Энкодеры преобразует текст в семантические представления, которые помогают системе понять смысл текста, а не просто искать совпадения по словам.

Это позволяет эффективно работать с перефразированием и синонимами. На основе семантических представлений можно легко обучить мощные классификаторы для определения, например, токсичности или спама в тексте (трепещите, боты в комментариях!)
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/antidigital/8719
Create:
Last Update:

Опенсорса много не бывает. Сегодня VK запустил инициативу OpenVK, в рамках которой будет выкладывать в open source свои проекты по нескольким направлениям, включая ИИ. Пока основной площадкой будет GitHub, но в перспективе компания готовится работать и с отечественными Git-платформами.

На старте разработчики опубликовали исходный код платформы Tarantool для создания высоконагруженных приложений, системы StatsHouse для визуализации данных для мониторинга, дизайн-системы VKUI для создания удобных интерфейсов и ряд других. А оформлено всё это как у Яндекса, на отдельном лендинге со ссылками и описанием (хотя источники вдохновения у обоих понятно какие).

🤖 В OpenVK также будут доступны ИИ-модели и библиотеки для их создания. Но о собственной open source LLM пока речи не идёт, что выглядит удивительно после того парада моделей, который мы наблюдали в исполнении MTS AI, Т-Банка и Сбера. Кажется, как и в Яндексе, в VK свои карты раскрывать не спешат.

Зато уже доступна модель EmoSpeech для синтеза речи, обученная на фонемных последовательностях. Она позволяет придать искусственной речи правильные эмоциональные оттенки при озвучке текста нейросетями. Интегрировать решение можно с любой моделью Text-to-Speech, а при наличии датасета — обучить работе с нужным языком (по умолчанию работает только с английским).

У Яндекса тоже есть инструмент для генерации речи, но в открытый доступ компания выложила не его исходный код, а свои правила работы с технологией. Но там речь всё-таки идёт о вопросах взаимодействия с реальными дикторами и генерации контента с их голосами.

💻 Отдельно отметим, что среди опенсорс-разработок VK также будут доступны энкодеры. Их используют для задач обработки естественного языка, таких как классификация и семантический поиск. Энкодеры преобразует текст в семантические представления, которые помогают системе понять смысл текста, а не просто искать совпадения по словам.

Это позволяет эффективно работать с перефразированием и синонимами. На основе семантических представлений можно легко обучить мощные классификаторы для определения, например, токсичности или спама в тексте (трепещите, боты в комментариях!)

BY Нецифровая экономика




Share with your friend now:
group-telegram.com/antidigital/8719

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children.
from tw


Telegram Нецифровая экономика
FROM American