Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/choking_data/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
душно про дату | Telegram Webview: choking_data/27 -
Telegram Group & Telegram Channel
I. Регрессия для нормального респонса

Итак, пусть условное распределение Y при данном X нормально и наши наблюдения условно при данном X независимы -- первая строка на картинке. Тогда условное распределение оценок коэффициентов тоже нормальное, оценки несмещенные и состоятельные.

Что важно:
1. Мы не налагаем вообще никаких ограничений на распределение регрессоров. В том числе, мы не требуем, чтобы (Yi, Xi) были iid, мы ограничились только условной независимостью.
2. Зато условное распределение респонса должно быть нормальным и никак иначе. Наверное, мы можем сказать что это условно параметрическая модель. Условно -- потому что мы обусловливаем иксами. Параметрическая -- потому что мы предполагаем, что (условное) распределение игреков принадлежит параметрическому семейству и полностью описывается (условным) матожиданием и (условной же) остаточной дисперсией.
3. Тесты в такой модели точные (в противовес асимптотическим) -- т.е. работают и на малых выборках.
4. Статвывод проводится условно при данных регрессорах. Посчитать маргинальную дисперсию оценок не получится -- для этого нужно выинтегрировать иксы, а мы не знаем их распределения.
5. Благодаря тому, что мы обуславливаем иксами, они могут быть как случайными, так и заранее заданными / константными (designed industrial experiments, вам привет).

Четвертый пункт мозголомный, как его интерпретировать философски я пока не очень понимаю. Если вдруг кто-то в курсе -- пишите в комментариях.

Еще раз заметим, что мы здесь работаем условно (conditionally) при данных регрессорах. В этой модели OLS оценка -- это оценка методом условного максимального правдоподобия. Для метода максимального правдоподобия мы не задаем совместное распределение Y и X, мы определяем условное распределение игреков при данных иксах.

Сравните также, например, с тестом Фишера, непараметрическим бутстрепом, перестановочными тестами, регрессией Кокса или условной логистической регрессией. Техника обуславливания данными (всеми или частью) -- продуктивная штука.



group-telegram.com/choking_data/27
Create:
Last Update:

I. Регрессия для нормального респонса

Итак, пусть условное распределение Y при данном X нормально и наши наблюдения условно при данном X независимы -- первая строка на картинке. Тогда условное распределение оценок коэффициентов тоже нормальное, оценки несмещенные и состоятельные.

Что важно:
1. Мы не налагаем вообще никаких ограничений на распределение регрессоров. В том числе, мы не требуем, чтобы (Yi, Xi) были iid, мы ограничились только условной независимостью.
2. Зато условное распределение респонса должно быть нормальным и никак иначе. Наверное, мы можем сказать что это условно параметрическая модель. Условно -- потому что мы обусловливаем иксами. Параметрическая -- потому что мы предполагаем, что (условное) распределение игреков принадлежит параметрическому семейству и полностью описывается (условным) матожиданием и (условной же) остаточной дисперсией.
3. Тесты в такой модели точные (в противовес асимптотическим) -- т.е. работают и на малых выборках.
4. Статвывод проводится условно при данных регрессорах. Посчитать маргинальную дисперсию оценок не получится -- для этого нужно выинтегрировать иксы, а мы не знаем их распределения.
5. Благодаря тому, что мы обуславливаем иксами, они могут быть как случайными, так и заранее заданными / константными (designed industrial experiments, вам привет).

Четвертый пункт мозголомный, как его интерпретировать философски я пока не очень понимаю. Если вдруг кто-то в курсе -- пишите в комментариях.

Еще раз заметим, что мы здесь работаем условно (conditionally) при данных регрессорах. В этой модели OLS оценка -- это оценка методом условного максимального правдоподобия. Для метода максимального правдоподобия мы не задаем совместное распределение Y и X, мы определяем условное распределение игреков при данных иксах.

Сравните также, например, с тестом Фишера, непараметрическим бутстрепом, перестановочными тестами, регрессией Кокса или условной логистической регрессией. Техника обуславливания данными (всеми или частью) -- продуктивная штука.

BY душно про дату




Share with your friend now:
group-telegram.com/choking_data/27

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from tw


Telegram душно про дату
FROM American