Telegram Group & Telegram Channel
Непрерывное математическое образование
https://ium.mccme.ru/globus.html в четверг 17 октября на семинаре «Глобус» Юрий Прохров будет рассказывать про проблемы рациональности в алгебраической геометрии «Многообразие рационально, если оно допускает параметризацию рациональными функциями “почти…
https://ium.mccme.ru/globus.html

в четверг 7 ноября на семинаре «Глобус» Ольга Починка будет рассказывать о топологической ветке нижегородской школы нелинейных колебаний академика А.А.Андронова

15:40, конференц-зал НМУ

«Наиболее интенсивная и плодотворная деятельность А.А.Андронова как учёного, педагога и организатора развернулась в городе Горьком (ныне Нижний Новгород), куда он в 1931 году вместе с группой талантливых молодых учёных (М.Т.Грехова, В.И.Гапонов, Е.А.Леонтович, А.Г.Любина) переехал на постоянное местожительство. Здесь (вместе с учениками и коллегами) он ввел и детально разработал понятие «грубая система» — система, устойчивая к небольшим изменениям параметров. Полученный А.А.Андроновым и Л.С.Понтрягиным критерий грубости системы дифференциальных уравнений на плоскости по праву считается предвестником “гиперболической революции”, произошедшей в теории динамических систем в 60-х годах 20 века. (…) Аналоги грубых потоков на плоскости, (…) получившие название систем Морса-Смейла, оказались лишь частью многогранного гиперболического мира — это структурно устойчивые системы с конечным числом периодических точек. Как оказалось, титул "простейшие структурно устойчивые системы" совсем не отражает сути происходящего в мире систем Морса-Смейла. На сегодняшний день (благодаря серии работ нижегородско-французского коллектива: Х.Бонатти, В.З.Гринес, Е.Я.Гуревич, Е.В.Жужома, Ф.Лауденбах, В.С.Медведев, О.В.Починка) трудно указать какой-либо топологический эффект, не проявившийся в качестве инварианта такой динамической системы. (…) В начале доклада будет дан краткий обзор истории Горьковской-Нижегородской математической школы и ее вклада в теорию бифуркаций и динамических систем.»



group-telegram.com/cme_channel/3996
Create:
Last Update:

https://ium.mccme.ru/globus.html

в четверг 7 ноября на семинаре «Глобус» Ольга Починка будет рассказывать о топологической ветке нижегородской школы нелинейных колебаний академика А.А.Андронова

15:40, конференц-зал НМУ

«Наиболее интенсивная и плодотворная деятельность А.А.Андронова как учёного, педагога и организатора развернулась в городе Горьком (ныне Нижний Новгород), куда он в 1931 году вместе с группой талантливых молодых учёных (М.Т.Грехова, В.И.Гапонов, Е.А.Леонтович, А.Г.Любина) переехал на постоянное местожительство. Здесь (вместе с учениками и коллегами) он ввел и детально разработал понятие «грубая система» — система, устойчивая к небольшим изменениям параметров. Полученный А.А.Андроновым и Л.С.Понтрягиным критерий грубости системы дифференциальных уравнений на плоскости по праву считается предвестником “гиперболической революции”, произошедшей в теории динамических систем в 60-х годах 20 века. (…) Аналоги грубых потоков на плоскости, (…) получившие название систем Морса-Смейла, оказались лишь частью многогранного гиперболического мира — это структурно устойчивые системы с конечным числом периодических точек. Как оказалось, титул "простейшие структурно устойчивые системы" совсем не отражает сути происходящего в мире систем Морса-Смейла. На сегодняшний день (благодаря серии работ нижегородско-французского коллектива: Х.Бонатти, В.З.Гринес, Е.Я.Гуревич, Е.В.Жужома, Ф.Лауденбах, В.С.Медведев, О.В.Починка) трудно указать какой-либо топологический эффект, не проявившийся в качестве инварианта такой динамической системы. (…) В начале доклада будет дан краткий обзор истории Горьковской-Нижегородской математической школы и ее вклада в теорию бифуркаций и динамических систем.»

BY Непрерывное математическое образование


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/cme_channel/3996

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. Despite Telegram's origins, its approach to users' security has privacy advocates worried. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation."
from tw


Telegram Непрерывное математическое образование
FROM American