Как разложить F:=X³+Y³+Z³-3XYZ на множители? Вот несколько возможных подходов.
1) Если поверить, что это возможно, то один из множителей линейный. Проверим, делится ли это выражение на симметричный линейный множитель, X+Y+Z. Ну, если X+Y+Z=0, то Z=-(X+Y) и X³+Y³+Z³=X³+Y³-(X+Y)³=-3X²Y-3XY²=-3XY(X+Y)=3XYZ. То есть X³+Y³+Z³-3XYZ=0 (mod X+Y+Z). Дальше можно разделить F на X+Y+Z в столбик просто.
2) Насколько X³+Y³+Z³ отличается от (X+Y+Z)³? X³+Y³+Z³=(X+Y+Z)³-3(X+Y+Z)(XY+YZ+ZX)+3XYZ (можно сказать, что мы выразили левую часть через элементарные симметрические многочлены). Видим, что F=(X+Y+Z)((X+Y+Z)²-3(XY+YZ+ZX))=(X+Y+Z)(X²+Y²+Z²-XY-YZ-ZX).
Дальше на этом пути можно пытаться выразить суммы n-х степеней через элементарные симметрические (“формулы Ньютона”).
3) F — определитель матрицы |X Y Z| |Z X Y| |Y Z X| Если прибавить к первой строке две остальные, то видно, что он делится на (X+Y+Z). Оставшийся определитель легко посчитать, но можно вместо этого заметить, что по аналогичной причине определитель делится на (X+wY+w²Z) и (X+w²Y+wZ), где w — кубический корень из 1.
Это вычисление несложно обобщить на определитель F_n матрицы X_{i-j mod n}. Но на этом история не заканчивается, скорее только начинается. И это история про Фробениуса и теорию представлений конечных групп — можно посмотреть по этому поводу текст K.Conrad’а, https://kconrad.math.uconn.edu/articles/groupdet.pdf
Как разложить F:=X³+Y³+Z³-3XYZ на множители? Вот несколько возможных подходов.
1) Если поверить, что это возможно, то один из множителей линейный. Проверим, делится ли это выражение на симметричный линейный множитель, X+Y+Z. Ну, если X+Y+Z=0, то Z=-(X+Y) и X³+Y³+Z³=X³+Y³-(X+Y)³=-3X²Y-3XY²=-3XY(X+Y)=3XYZ. То есть X³+Y³+Z³-3XYZ=0 (mod X+Y+Z). Дальше можно разделить F на X+Y+Z в столбик просто.
2) Насколько X³+Y³+Z³ отличается от (X+Y+Z)³? X³+Y³+Z³=(X+Y+Z)³-3(X+Y+Z)(XY+YZ+ZX)+3XYZ (можно сказать, что мы выразили левую часть через элементарные симметрические многочлены). Видим, что F=(X+Y+Z)((X+Y+Z)²-3(XY+YZ+ZX))=(X+Y+Z)(X²+Y²+Z²-XY-YZ-ZX).
Дальше на этом пути можно пытаться выразить суммы n-х степеней через элементарные симметрические (“формулы Ньютона”).
3) F — определитель матрицы |X Y Z| |Z X Y| |Y Z X| Если прибавить к первой строке две остальные, то видно, что он делится на (X+Y+Z). Оставшийся определитель легко посчитать, но можно вместо этого заметить, что по аналогичной причине определитель делится на (X+wY+w²Z) и (X+w²Y+wZ), где w — кубический корень из 1.
Это вычисление несложно обобщить на определитель F_n матрицы X_{i-j mod n}. Но на этом история не заканчивается, скорее только начинается. И это история про Фробениуса и теорию представлений конечных групп — можно посмотреть по этому поводу текст K.Conrad’а, https://kconrad.math.uconn.edu/articles/groupdet.pdf
BY Непрерывное математическое образование
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders.
from tw