Notice: file_put_contents(): Write of 3313 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 11505 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/21 -
Telegram Group & Telegram Channel
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle, Michael Carbin
CSAIL MIT

Статья: https://arxiv.org/abs/1803.03635

#CNN, #FFNN, #optimization, #pruning, #ICLR 2019

Статья немного про природу вещей. Рассматривают dense feed-forward neural networks, полносвязные и/или CNN. Известно, что методы network pruning позволяют эффективно ужать уже обученную сеть -- выкинуть заметную часть параметров (связей) без потерь качества (в ряде случаев удаётся снизить объём на 90%). Известно, кроме того, что сразу научить такую уменьшенную сеть до того же качества не выходит.

Авторы выдвигают гипотезу "лотерейного билета": любая случайно инициализированная плотная сеть, обучаемая на заданный таргет, содержит некоторую подсеть, которая, будучи обученной на тот же таргет, даст качество не хуже за то же или меньшее число итераций обучения. В целом, это утверждение имеет как минимум тривиальное подтверждение, но авторы утверждают, что это эффективная подсеть обычно существенно меньше основной. Такие эффективные подсети называют "winning tickets".

Интуиция тут такая: Начиная обучать случайно инициализированную сеть, оптимизатор просто ищет уже готовый подходящий канал внутри случайной сети, а дальше уже именно этот путь оптимизируется, а остальная сеть не очень то и нужна. В плотной сети число возможных путей от входа к выходу растёт с числом нейронов существенно надлинейно. Поэтому, чем больше сеть взять в начале, тем больше шансов сразу получить подходящий подграф.

Проводят серию экспериментов для подтверждения этой гипотезы:
1) Возьмём большую случайно инициализированную сеть Х, сохраним её копию С.
2) Обучим Х, применим к ней pruning, получим редуцированную обученную сеть У (размером 10-20% от Х).
3) Вернёмся к сохранённой копии С, редуцируем её до тех же параметров, что остались в У, но веса оставим случайными (из С) -- это будет сеть Z.
4) Обучим Z и сравним сходимость с Х. Качество должно получиться не хуже, а сходимость -- не медленнее.
5) Затем вернёмся к Z и вновь переинициализируем её случайным образом, пусть это будет сеть R. Опять сравним с X и Z. Если гипотеза верна, всё должно ухудшиться.
6) Ещё можно сравниться со случайным подграфом Х того же размера что Z.

В целом, результаты экспериментов скорее подтверждают гипотезу, по крайней мере для простых топологий. Дальше в статье идёт разбор таких экспериментов для некоторого числа разных задач, топологий и методов оптимизации.

Общие выводы:
- текущая схема обучения сетей не очень эффективна, есть куда улучшаться, например, в сторону более эффективной начальной инициализации (но не очень понятно как),
- можно попробовать определять winning tickets на ранних стадиях обучения большой сети и делать ранний pruning к ним -- это может повысить эффективность обучения на практике.



group-telegram.com/gonzo_ML/21
Create:
Last Update:

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle, Michael Carbin
CSAIL MIT

Статья: https://arxiv.org/abs/1803.03635

#CNN, #FFNN, #optimization, #pruning, #ICLR 2019

Статья немного про природу вещей. Рассматривают dense feed-forward neural networks, полносвязные и/или CNN. Известно, что методы network pruning позволяют эффективно ужать уже обученную сеть -- выкинуть заметную часть параметров (связей) без потерь качества (в ряде случаев удаётся снизить объём на 90%). Известно, кроме того, что сразу научить такую уменьшенную сеть до того же качества не выходит.

Авторы выдвигают гипотезу "лотерейного билета": любая случайно инициализированная плотная сеть, обучаемая на заданный таргет, содержит некоторую подсеть, которая, будучи обученной на тот же таргет, даст качество не хуже за то же или меньшее число итераций обучения. В целом, это утверждение имеет как минимум тривиальное подтверждение, но авторы утверждают, что это эффективная подсеть обычно существенно меньше основной. Такие эффективные подсети называют "winning tickets".

Интуиция тут такая: Начиная обучать случайно инициализированную сеть, оптимизатор просто ищет уже готовый подходящий канал внутри случайной сети, а дальше уже именно этот путь оптимизируется, а остальная сеть не очень то и нужна. В плотной сети число возможных путей от входа к выходу растёт с числом нейронов существенно надлинейно. Поэтому, чем больше сеть взять в начале, тем больше шансов сразу получить подходящий подграф.

Проводят серию экспериментов для подтверждения этой гипотезы:
1) Возьмём большую случайно инициализированную сеть Х, сохраним её копию С.
2) Обучим Х, применим к ней pruning, получим редуцированную обученную сеть У (размером 10-20% от Х).
3) Вернёмся к сохранённой копии С, редуцируем её до тех же параметров, что остались в У, но веса оставим случайными (из С) -- это будет сеть Z.
4) Обучим Z и сравним сходимость с Х. Качество должно получиться не хуже, а сходимость -- не медленнее.
5) Затем вернёмся к Z и вновь переинициализируем её случайным образом, пусть это будет сеть R. Опять сравним с X и Z. Если гипотеза верна, всё должно ухудшиться.
6) Ещё можно сравниться со случайным подграфом Х того же размера что Z.

В целом, результаты экспериментов скорее подтверждают гипотезу, по крайней мере для простых топологий. Дальше в статье идёт разбор таких экспериментов для некоторого числа разных задач, топологий и методов оптимизации.

Общие выводы:
- текущая схема обучения сетей не очень эффективна, есть куда улучшаться, например, в сторону более эффективной начальной инициализации (но не очень понятно как),
- можно попробовать определять winning tickets на ранних стадиях обучения большой сети и делать ранний pruning к ним -- это может повысить эффективность обучения на практике.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/21

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion.
from tw


Telegram gonzo-обзоры ML статей
FROM American