Telegram Group & Telegram Channel
DeepSeek-V3 Technical Report
Статья: https://arxiv.org/abs/2412.19437
Репа: https://github.com/deepseek-ai/DeepSeek-V3

Предыдущий пост про DeepSeek был попсовый (https://www.group-telegram.com/tw/gonzo_ML.com/3239), сегодня хочется пройтись по некоторым техническим решениям в DeepSeek, которые мы тут раньше не обсуждали.

В-нулевых, что важно знать про DeepSeek-V3 — это всё ещё относительно классический трансформер декодер (но с MoE, https://www.group-telegram.com/tw/gonzo_ML.com/472). DeepSeek-V3 содержит 671B параметров, из которых активны 37B для каждого токена. 61 трансформерный слой, d_h = 7168.

В работе есть несколько интересных решений, которые хочется отметить для истории. Для начала пара вещей, проверенных в DeepSeek-V2 (https://arxiv.org/abs/2405.04434).


❇️ Во-первых, Multi-head Latent Attention (MLA). Что это такое?

В классическом Multi-Head Attention (MHA) эмбеддинги входных токенов h_t проецируются в векторы query, key, value q_t, k_t, v_t через незавимимые матрицы проекций W^q, W^k, W^v и затем нарезаются на векторы для отдельных голов внимания. После работы self-attention (тот самый softmax(QK/sqrt(d))*V ), получаем o_t для отдельных голов, конкатенируем и далее через матрицу W^o генерим выход слоя.

MLA делает низкоранговую компрессию для key и values, где h_t сначала проецируется в низкоранговый латентный вектор c_t, а потом из этого вектора через отдельные матрицы W^uk, W^uv, разворачивается в k_t, v_t. Размер латентного вектора, d_c, сильно меньше, чем итоговая размерность с учётом всех голов (d_h*n_h). На инференсе это сокращает размер необходимого KV-кеша, потому что надо кешировать только низкоразмерные c_t, а не полноразмерные k_t, v_t как раньше. Более того, матрицы проекций из c_t в ключи и значения можно вообще убрать, матрицу для k_t (W^uk) можно инкорпорировать внутрь матрицы для получения q_t (W^q), а матрицу для v_t (W^uv) внутрь выходной матрицы W^o.

На самом деле и для q_t тоже делается низкоранговая компрессия в свой вектор c_t, это не влияет на KV-кеш, но помогает уменьшить объём памяти для активаций при обучении.

Была проблема с тем, что позиционные эмбеддинги RoPE несовместимы с низкоранговой компрессией KV, для решения этой проблемы предложили decoupled RoPE strategy с дополнительными многоголовыми q^R и шареным k^R со своей размерностью d^R_h на голову. Итоговые вектора для Q и K являются конкатенацией векторов полученных из соответствующего низкорангового вектора c_t и вектора для RoPE (q^R, k^R).

Посмотрите на формулы (раздел 2.1.2), там понятнее, чем текстом.

В DeepSeek-V2, размерность латентного вектора d_c была установлена в 4d_h (суммарная размерность четырёх голов), а размерность для RoPE d^R_h в d_h/2 (полголовы). В MLA DeepSeek-V3 128 голов внимания, каждая размерности 128. Размерность d_c равна 512.

Помните, что это не единственный способ оптимизации внимания при ускорении генерации и от классического MHA уже много где ушли в Multi-Query Attention (MQA) имени Ноама Шазира (https://arxiv.org/abs/1911.02150), где K и V шарятся между всеми головами внимания (что сильно ускоряет инференс и слегка ухудшает качество), и Grouped-Query Attention (GQA) тоже от Гугла (https://arxiv.org/abs/2305.13245), которое было срединным путём между MHA и MQA, и где количество key-value голов было больше одной, но меньше полного набора как у query — здесь по одной key-value голове на группу query голов — и качество можно приближать к оригинальному MHA.

MLA хорошо экономит кеш, сравним с GQA с 2.25 групп, при этом перформанс даже выше MHA. В общем выглядит так, что MLA должен теперь доминировать везде. Не знаю, есть ли что-то лучше из опубликованного?



group-telegram.com/gonzo_ML/3292
Create:
Last Update:

DeepSeek-V3 Technical Report
Статья: https://arxiv.org/abs/2412.19437
Репа: https://github.com/deepseek-ai/DeepSeek-V3

Предыдущий пост про DeepSeek был попсовый (https://www.group-telegram.com/tw/gonzo_ML.com/3239), сегодня хочется пройтись по некоторым техническим решениям в DeepSeek, которые мы тут раньше не обсуждали.

В-нулевых, что важно знать про DeepSeek-V3 — это всё ещё относительно классический трансформер декодер (но с MoE, https://www.group-telegram.com/tw/gonzo_ML.com/472). DeepSeek-V3 содержит 671B параметров, из которых активны 37B для каждого токена. 61 трансформерный слой, d_h = 7168.

В работе есть несколько интересных решений, которые хочется отметить для истории. Для начала пара вещей, проверенных в DeepSeek-V2 (https://arxiv.org/abs/2405.04434).


❇️ Во-первых, Multi-head Latent Attention (MLA). Что это такое?

В классическом Multi-Head Attention (MHA) эмбеддинги входных токенов h_t проецируются в векторы query, key, value q_t, k_t, v_t через незавимимые матрицы проекций W^q, W^k, W^v и затем нарезаются на векторы для отдельных голов внимания. После работы self-attention (тот самый softmax(QK/sqrt(d))*V ), получаем o_t для отдельных голов, конкатенируем и далее через матрицу W^o генерим выход слоя.

MLA делает низкоранговую компрессию для key и values, где h_t сначала проецируется в низкоранговый латентный вектор c_t, а потом из этого вектора через отдельные матрицы W^uk, W^uv, разворачивается в k_t, v_t. Размер латентного вектора, d_c, сильно меньше, чем итоговая размерность с учётом всех голов (d_h*n_h). На инференсе это сокращает размер необходимого KV-кеша, потому что надо кешировать только низкоразмерные c_t, а не полноразмерные k_t, v_t как раньше. Более того, матрицы проекций из c_t в ключи и значения можно вообще убрать, матрицу для k_t (W^uk) можно инкорпорировать внутрь матрицы для получения q_t (W^q), а матрицу для v_t (W^uv) внутрь выходной матрицы W^o.

На самом деле и для q_t тоже делается низкоранговая компрессия в свой вектор c_t, это не влияет на KV-кеш, но помогает уменьшить объём памяти для активаций при обучении.

Была проблема с тем, что позиционные эмбеддинги RoPE несовместимы с низкоранговой компрессией KV, для решения этой проблемы предложили decoupled RoPE strategy с дополнительными многоголовыми q^R и шареным k^R со своей размерностью d^R_h на голову. Итоговые вектора для Q и K являются конкатенацией векторов полученных из соответствующего низкорангового вектора c_t и вектора для RoPE (q^R, k^R).

Посмотрите на формулы (раздел 2.1.2), там понятнее, чем текстом.

В DeepSeek-V2, размерность латентного вектора d_c была установлена в 4d_h (суммарная размерность четырёх голов), а размерность для RoPE d^R_h в d_h/2 (полголовы). В MLA DeepSeek-V3 128 голов внимания, каждая размерности 128. Размерность d_c равна 512.

Помните, что это не единственный способ оптимизации внимания при ускорении генерации и от классического MHA уже много где ушли в Multi-Query Attention (MQA) имени Ноама Шазира (https://arxiv.org/abs/1911.02150), где K и V шарятся между всеми головами внимания (что сильно ускоряет инференс и слегка ухудшает качество), и Grouped-Query Attention (GQA) тоже от Гугла (https://arxiv.org/abs/2305.13245), которое было срединным путём между MHA и MQA, и где количество key-value голов было больше одной, но меньше полного набора как у query — здесь по одной key-value голове на группу query голов — и качество можно приближать к оригинальному MHA.

MLA хорошо экономит кеш, сравним с GQA с 2.25 групп, при этом перформанс даже выше MHA. В общем выглядит так, что MLA должен теперь доминировать везде. Не знаю, есть ли что-то лучше из опубликованного?

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/3292

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. Some privacy experts say Telegram is not secure enough "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety.
from tw


Telegram gonzo-обзоры ML статей
FROM American