Telegram Group & Telegram Channel
Несуществующие функторы

Несколько месяцев назад написал Эммануэль Фарджун (который еще нильпотентные пространства придумал). Говорит, что уверен, что не бывает никаких функторов из категории всех групп в категорию конечных групп, кроме постоянных. Но как доказать не знает. А доказать хочется, потому что его интересуют подобные вопросы для его любимых бесконечность категорий. Я скинул этот вопрос про категорию групп в чатик друзей, и Толик в тот же день доказал, красавчик вообще.

Эммануэль впечатлился, но сказал, что надо бы обобщить тогда уж. Нужно доказать, что не бывает непостоянных функторов из в каком-то смысле "больших" категорий во в каком-то смысле "маленькие" категории. Я помедитировал на доказательство Толика, десять раз его переделал, и доказал такую общую теорему.

Теорема. Пусть к — какой-то кардинал, C и D — категории, в которых определены произведения мощности к, и F — функтор из C в D. Предположим, что категория C сильно связна (то есть все её хом-множества не пусты), и что мощности хом-множеств между образами функтора F ограничены кардиналом к
|D(Fc,Fc')| ≤ к.
Тогда F постоянный функтор.

По технике — это детский сад, элементарная теория категорий, но Фарджун был доволен.

Из этой теоремы много забавных частных случаев следует. Например, из категории счётных групп нет непостоянных функторов в категорию конечно порожденных групп. Хотя чисто интуитивно довольно близкие категории. Или, например, если есть два кардинала к и л таких, что к ≥ 2^л, то нет непостоянных функторов из категории непустых множеств мощности ≤к в категорию непустых множеств мощности ≤л. Можно ещё много частных случаев напридумывать.

Мы ещё много чего понаписали, ещё другое направление там развили (изучали каких подфункторов в тождественном функторе на категории групп не бывает), скинули это дело в архив, но мы там ошибочку допустили. Мы сказали, что нет непостоянных функторов из категории всех множеств в категорию конечных множеств. Вот тут то нас и подловили. Понаписали на почту какие-то люди, что оказывается есть функтор такой. Что можно пустое множество в пустое послать, а все остальные множества в одноэлементное. И правда, я там опростоволосился с тем, что подумал, что категория множеств сильно связная, а оказалось, что хом из непустого множества в пустое множество пуст. Ну мы подправили. Нужно было категорию множеств либо на категорию непустых множеств заменить, либо на категорию множеств с отмеченной точкой. Эммануэль там еще какие-то свои гипотезы про бесконечность категории понаписал, как обычно. Выложили новую версию:

https://arxiv.org/abs/2306.04432



group-telegram.com/math_dump_of_sepa/177
Create:
Last Update:

Несуществующие функторы

Несколько месяцев назад написал Эммануэль Фарджун (который еще нильпотентные пространства придумал). Говорит, что уверен, что не бывает никаких функторов из категории всех групп в категорию конечных групп, кроме постоянных. Но как доказать не знает. А доказать хочется, потому что его интересуют подобные вопросы для его любимых бесконечность категорий. Я скинул этот вопрос про категорию групп в чатик друзей, и Толик в тот же день доказал, красавчик вообще.

Эммануэль впечатлился, но сказал, что надо бы обобщить тогда уж. Нужно доказать, что не бывает непостоянных функторов из в каком-то смысле "больших" категорий во в каком-то смысле "маленькие" категории. Я помедитировал на доказательство Толика, десять раз его переделал, и доказал такую общую теорему.

Теорема. Пусть к — какой-то кардинал, C и D — категории, в которых определены произведения мощности к, и F — функтор из C в D. Предположим, что категория C сильно связна (то есть все её хом-множества не пусты), и что мощности хом-множеств между образами функтора F ограничены кардиналом к
|D(Fc,Fc')| ≤ к.
Тогда F постоянный функтор.

По технике — это детский сад, элементарная теория категорий, но Фарджун был доволен.

Из этой теоремы много забавных частных случаев следует. Например, из категории счётных групп нет непостоянных функторов в категорию конечно порожденных групп. Хотя чисто интуитивно довольно близкие категории. Или, например, если есть два кардинала к и л таких, что к ≥ 2^л, то нет непостоянных функторов из категории непустых множеств мощности ≤к в категорию непустых множеств мощности ≤л. Можно ещё много частных случаев напридумывать.

Мы ещё много чего понаписали, ещё другое направление там развили (изучали каких подфункторов в тождественном функторе на категории групп не бывает), скинули это дело в архив, но мы там ошибочку допустили. Мы сказали, что нет непостоянных функторов из категории всех множеств в категорию конечных множеств. Вот тут то нас и подловили. Понаписали на почту какие-то люди, что оказывается есть функтор такой. Что можно пустое множество в пустое послать, а все остальные множества в одноэлементное. И правда, я там опростоволосился с тем, что подумал, что категория множеств сильно связная, а оказалось, что хом из непустого множества в пустое множество пуст. Ну мы подправили. Нужно было категорию множеств либо на категорию непустых множеств заменить, либо на категорию множеств с отмеченной точкой. Эммануэль там еще какие-то свои гипотезы про бесконечность категории понаписал, как обычно. Выложили новую версию:

https://arxiv.org/abs/2306.04432

BY Математическая свалка Сепы


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/math_dump_of_sepa/177

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth."
from tw


Telegram Математическая свалка Сепы
FROM American