перевод рецензии на книги (а сами книги — следующим сообщением):
Возможно, первый совет, который я получил от своего научного руководителя в аспирантуре по поводу занятий математикой, звучал так: «Доказывать что-либо всегда легче, когда знаешь, что это правда».
Для меня это утверждение подчеркивает разницу между тем, как большинство из нас занимается математикой, и тем, как мы её представляем.
Когда мы публикуем доказательство, мы часто напоминаем фокусника, демонстрирующего свой последний трюк — гладкое, отточенное и красивое представление, которое (надеемся) впечатляет зрителей, вызывает у них восхищение зрелищем и уважение к нашему таланту. Мы движемся логическим крещендо от определений к леммам и затем к основной теореме, всегда следуя вперёд и вверх.
Однако на самом деле мы не занимаемся математикой таким образом. Наоборот, вероятно, точнее будет сказать, что мы начинаем с теоремы и работаем в обратном направлении: «У меня есть результат, но я пока не знаю, как его получить». — К. Ф. Гаусс
Все математики развивают своё интуитивное понимание задач и объектов, изучая примеры. Когда эта интуиция становится достаточно сильной, мы знаем результат ещё до того, как у нас есть его доказательство. А как только теорема сформулирована, мы приступаем к её доказательству. Можно утверждать, что математика давно устроена именно так: хотя она отличается от других областей знания своей доказательной строгостью, как практики мы не застрахованы от того, чтобы «испачкать руки» экспериментами — хотя мы обычно неохотно признаём это и стараемся, если возможно, скрыть.
Главный посыл этих двух книг заключается в том, что настало время принять эксперимент как часть математики, а не скрывать его. И теперь это возможно, потому что компьютер сделал широкомасштабный и систематический эксперимент реальностью.
перевод рецензии на книги (а сами книги — следующим сообщением):
Возможно, первый совет, который я получил от своего научного руководителя в аспирантуре по поводу занятий математикой, звучал так: «Доказывать что-либо всегда легче, когда знаешь, что это правда».
Для меня это утверждение подчеркивает разницу между тем, как большинство из нас занимается математикой, и тем, как мы её представляем.
Когда мы публикуем доказательство, мы часто напоминаем фокусника, демонстрирующего свой последний трюк — гладкое, отточенное и красивое представление, которое (надеемся) впечатляет зрителей, вызывает у них восхищение зрелищем и уважение к нашему таланту. Мы движемся логическим крещендо от определений к леммам и затем к основной теореме, всегда следуя вперёд и вверх.
Однако на самом деле мы не занимаемся математикой таким образом. Наоборот, вероятно, точнее будет сказать, что мы начинаем с теоремы и работаем в обратном направлении: «У меня есть результат, но я пока не знаю, как его получить». — К. Ф. Гаусс
Все математики развивают своё интуитивное понимание задач и объектов, изучая примеры. Когда эта интуиция становится достаточно сильной, мы знаем результат ещё до того, как у нас есть его доказательство. А как только теорема сформулирована, мы приступаем к её доказательству. Можно утверждать, что математика давно устроена именно так: хотя она отличается от других областей знания своей доказательной строгостью, как практики мы не застрахованы от того, чтобы «испачкать руки» экспериментами — хотя мы обычно неохотно признаём это и стараемся, если возможно, скрыть.
Главный посыл этих двух книг заключается в том, что настало время принять эксперимент как часть математики, а не скрывать его. И теперь это возможно, потому что компьютер сделал широкомасштабный и систематический эксперимент реальностью.
BY tropical saint petersburg
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
"The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future.
from tw