Территория химии. Выпуск 1: памятник и надгробие Льва Чугаева
Сегодня в нашем музее открывается новый виртуальный зал размером во всю Россию и более. Этот зал называется «Территория химии». Ведь действительно, на территории нашей страны - и не только - существует огромное количество мест, так или иначе связанных с химией. Помимо, собственно, химических заводов-институтов-факультетов, существует множество памятников, мемориальных досок, улиц, названных в честь химиков…
И сегодня мы начинаем собирать это в единый слой на картах. И рассказывать о каждом объекте в продолжении осмотра нашего виртуального музея.
Начнем мы с почти никому неизвестного места, затерянного в Вологодской области.
В декабре 1920 года великий российский химик Лев Чугаев вместе со своим учеником, Ильёй Черняевым выехал на несколько месяцев в Вологду для чтения лекций по химии в Вологодском институте народного образования, вёл подготовку по организации Вологодского государственного университета. Такую же командировку он получил и через год, продолжив лекции.
В роковое лето 1922 г. он вновь едет в Вологду - уже с женой и сыновьями. По дороге в Павло-Обнорском монастыре его сразил брюшной тиф. 22 сентября 1922 года скончался в Грязовецкой больнице и похоронен на монастырском кладбище. Сейчас кладбища на территории возрожденной обители уже нет, а вот памятник и надгробие великому российскому химику - есть. Мы обязательно еще навестим Льва Александровича уже нашим музеем в месте его последнего упокоения.
#территорияхимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий.
Сегодня в нашем музее открывается новый виртуальный зал размером во всю Россию и более. Этот зал называется «Территория химии». Ведь действительно, на территории нашей страны - и не только - существует огромное количество мест, так или иначе связанных с химией. Помимо, собственно, химических заводов-институтов-факультетов, существует множество памятников, мемориальных досок, улиц, названных в честь химиков…
И сегодня мы начинаем собирать это в единый слой на картах. И рассказывать о каждом объекте в продолжении осмотра нашего виртуального музея.
Начнем мы с почти никому неизвестного места, затерянного в Вологодской области.
В декабре 1920 года великий российский химик Лев Чугаев вместе со своим учеником, Ильёй Черняевым выехал на несколько месяцев в Вологду для чтения лекций по химии в Вологодском институте народного образования, вёл подготовку по организации Вологодского государственного университета. Такую же командировку он получил и через год, продолжив лекции.
В роковое лето 1922 г. он вновь едет в Вологду - уже с женой и сыновьями. По дороге в Павло-Обнорском монастыре его сразил брюшной тиф. 22 сентября 1922 года скончался в Грязовецкой больнице и похоронен на монастырском кладбище. Сейчас кладбища на территории возрожденной обители уже нет, а вот памятник и надгробие великому российскому химику - есть. Мы обязательно еще навестим Льва Александровича уже нашим музеем в месте его последнего упокоения.
#территорияхимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий.
День в истории химии: Юхан Гадолин
265 лет назад в Швеции родился выдающийся химик, который проживет 92 года и скончается в 38 километрах от места своего рождения, но уже на территории Российской империи, финн Юхан Гадолин. Впрочем, его принадлежность не так важна, как его достижения: ведь Гадолин - один из не очень большого количества ученых всех времен, что заполнили пока что 118 клеток таблицы Менделеева.
На счету Гадолина открытый им самый первый редкоземельный элемент, иттрий (и первый, названный в честь деревушки Иттербю), пропущенный им бериллий и минерал гадолинит, в котором содержался неизвестный тогда церий (а вот гадолиния, названного в честь нашего героя через 8 лет после его смерти, в гадолините почти нет). Зато именинник имеет отношение к Российской академии наук: его племянник, Аксель Вильгельмович Гадолин, генерал, артиллерист, минералог, сумел стать академиком Санкт-Петербургской академии наук и даже удостоиться Ломоносовской премии!
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий.
265 лет назад в Швеции родился выдающийся химик, который проживет 92 года и скончается в 38 километрах от места своего рождения, но уже на территории Российской империи, финн Юхан Гадолин. Впрочем, его принадлежность не так важна, как его достижения: ведь Гадолин - один из не очень большого количества ученых всех времен, что заполнили пока что 118 клеток таблицы Менделеева.
На счету Гадолина открытый им самый первый редкоземельный элемент, иттрий (и первый, названный в честь деревушки Иттербю), пропущенный им бериллий и минерал гадолинит, в котором содержался неизвестный тогда церий (а вот гадолиния, названного в честь нашего героя через 8 лет после его смерти, в гадолините почти нет). Зато именинник имеет отношение к Российской академии наук: его племянник, Аксель Вильгельмович Гадолин, генерал, артиллерист, минералог, сумел стать академиком Санкт-Петербургской академии наук и даже удостоиться Ломоносовской премии!
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий.
This media is not supported in your browser
VIEW IN TELEGRAM
Химический быт в видеозарисовках. Перегонка с паром
Мы продолжаем цикл авторских видео о «химической рутине» в нашем музее. Слово - сотруднику ИОНХ РАН Дмитрию Ямбулатову.
Перегонка с водяным паром - один из методов разделения смеси веществ. Можно перегнать вещества с температурой ниже их температуры кипения, что по своей сути приближает этот метод к перегонке под вакуумом.
В промышленности такой тип разделения применяется довольно широко. Например, при отделении эфирных масел или лимонена (смесь изомеров содержится в цедре цитрусовых). Лимонен кипит при 176 градусах, при этом может разлагаться, но перегонка с паром (100 градусов) предотвращает разложение и позволяет выделить лимонен из смеси веществ.
#бытхимика
#видео
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Мы продолжаем цикл авторских видео о «химической рутине» в нашем музее. Слово - сотруднику ИОНХ РАН Дмитрию Ямбулатову.
Перегонка с водяным паром - один из методов разделения смеси веществ. Можно перегнать вещества с температурой ниже их температуры кипения, что по своей сути приближает этот метод к перегонке под вакуумом.
В промышленности такой тип разделения применяется довольно широко. Например, при отделении эфирных масел или лимонена (смесь изомеров содержится в цедре цитрусовых). Лимонен кипит при 176 градусах, при этом может разлагаться, но перегонка с паром (100 градусов) предотвращает разложение и позволяет выделить лимонен из смеси веществ.
#бытхимика
#видео
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
День в истории химии: Ричард Смолли
82 года назад в «Резиновой столице мира» (Акрон, штат Огайо) родился Ричард Смолли (1943-2005) - американский физик, который сумел стать нобелевским лауреатом по химии.
Да, Смолли занимался лазерной спектроскопией в сверхзвуковых потоках. И изучал спектры различных веществ, испаряемых лазером и охлаждаемых в сверзвуковом потоке, занимался масс-спектроскопией…
Так получилось, что именно благодаря этой экспертизе классного спектроскописта Роберт Кёрл и пригласил его в группу Гарри Крото попытаться выяснить, из чего же состоит межзвездная пыль, особенно продуцируемая старыми звездами типа R Северной Короны. Итог экспериментов - открытие «футбольного мяча» размером в 60 атомов углерода, новой аллотропной модификации углерода - фуллеренов. Ну а дальше - нанотрубки, нанотехнологии… И Нобелевская премия по химии 1996 года, которая, увы, не дала Смолли долгой жизни: 62 года для нобелевского лауреата это катастрофически мало.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
82 года назад в «Резиновой столице мира» (Акрон, штат Огайо) родился Ричард Смолли (1943-2005) - американский физик, который сумел стать нобелевским лауреатом по химии.
Да, Смолли занимался лазерной спектроскопией в сверхзвуковых потоках. И изучал спектры различных веществ, испаряемых лазером и охлаждаемых в сверзвуковом потоке, занимался масс-спектроскопией…
Так получилось, что именно благодаря этой экспертизе классного спектроскописта Роберт Кёрл и пригласил его в группу Гарри Крото попытаться выяснить, из чего же состоит межзвездная пыль, особенно продуцируемая старыми звездами типа R Северной Короны. Итог экспериментов - открытие «футбольного мяча» размером в 60 атомов углерода, новой аллотропной модификации углерода - фуллеренов. Ну а дальше - нанотрубки, нанотехнологии… И Нобелевская премия по химии 1996 года, которая, увы, не дала Смолли долгой жизни: 62 года для нобелевского лауреата это катастрофически мало.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Реторта
Мы продолжаем пополнять экспозицию зала химических устройств в нашем Виртуальном музее химию и сегодня ставим в виртуальную витрину сосуд, в котором безуспешно пытались выращивать гомункулюсов алхимики, но провели много успешных экспериментов химики. Итак – реторта.
Читайте подробнее на сайте музея:
https://chem-museum.ru/ustrojstva/retorta/
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Мы продолжаем пополнять экспозицию зала химических устройств в нашем Виртуальном музее химию и сегодня ставим в виртуальную витрину сосуд, в котором безуспешно пытались выращивать гомункулюсов алхимики, но провели много успешных экспериментов химики. Итак – реторта.
Читайте подробнее на сайте музея:
https://chem-museum.ru/ustrojstva/retorta/
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
День в истории химии: Валентин Коптюг
94 года назад в Юхнове Калужской области родился выдающийся химик и академический деятель, Валентин Афанасьевич Коптюг (1931-1997).
Коптюг связал свою жизнь с Новосибирском - тамошним Институтом органической химии, где занимался изучением строения и свойств карбокатионов, изомеризации органических соединений, аренониевых ионов и много другого. Был академиком, вице-президентом РАН и главой Сибирского отделения РАН.
Увы, он прожил для ученого очень мало: 66 лет.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
94 года назад в Юхнове Калужской области родился выдающийся химик и академический деятель, Валентин Афанасьевич Коптюг (1931-1997).
Коптюг связал свою жизнь с Новосибирском - тамошним Институтом органической химии, где занимался изучением строения и свойств карбокатионов, изомеризации органических соединений, аренониевых ионов и много другого. Был академиком, вице-президентом РАН и главой Сибирского отделения РАН.
Увы, он прожил для ученого очень мало: 66 лет.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
This media is not supported in your browser
VIEW IN TELEGRAM
Новая загадка для дорогих посетителей нашего виртуального музея - как вы думаете, что это такое?
Химики, вероятно, догадаются быстро, эта утварь есть в каждой мокрой лаборатории
Для посетителей, далеких от химии - омоним разгадки есть у каждого на кухне! А еще при чем тут Либих?
*разгадка будет в следующем посте, не подглядывайте!
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Химики, вероятно, догадаются быстро, эта утварь есть в каждой мокрой лаборатории
Для посетителей, далеких от химии - омоним разгадки есть у каждого на кухне! А еще при чем тут Либих?
*разгадка будет в следующем посте, не подглядывайте!
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Media is too big
VIEW IN TELEGRAM
Химический быт в видеозарисовках. Сушим растворитель
Мы продолжаем цикл авторских видео о «химической рутине» в нашем музее. Слово - сотруднику ИОНХ РАН Дмитрию Ямбулатову, который покажет ответ на вчерашнюю загадку.
Для работы в инертной среде химикам нужны так называемые «сухие» или безводные растворители - это те, которые не содержат воды. Также такие растворители не должны содержать следов кислорода и углекислого газа
И если второе условие достичь легко простой перегазацией инертным газом, например, аргоном или вакуумированием, то следы воды нужно удалять щелочными металлами, гидридами или активированными молекулярными ситами
На данном видео мы осушаем тетрагидрофуран металлическим калием, который плавится при температуре ниже температуры кипения растворителя. Отсюда и красивые металлические шарики, которые очень эффективно реагируют с водой
Как только вся вода прореагирует, образуется синий или фиолетовый (два эквивалента металла) комплекс калия с бензофеноном, который тоже есть в осушаемом растворителе
В этом же видео мы впервые тестируем безводный обратный холодильник с металлическим радиатором, который служил загадкой в предыдущем посте. Первый пуск показал, что использовать такой холодильник в жару неэффективно, вопреки рекламным обещаниям.
#бытхимика
#видео
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Мы продолжаем цикл авторских видео о «химической рутине» в нашем музее. Слово - сотруднику ИОНХ РАН Дмитрию Ямбулатову, который покажет ответ на вчерашнюю загадку.
Для работы в инертной среде химикам нужны так называемые «сухие» или безводные растворители - это те, которые не содержат воды. Также такие растворители не должны содержать следов кислорода и углекислого газа
И если второе условие достичь легко простой перегазацией инертным газом, например, аргоном или вакуумированием, то следы воды нужно удалять щелочными металлами, гидридами или активированными молекулярными ситами
На данном видео мы осушаем тетрагидрофуран металлическим калием, который плавится при температуре ниже температуры кипения растворителя. Отсюда и красивые металлические шарики, которые очень эффективно реагируют с водой
Как только вся вода прореагирует, образуется синий или фиолетовый (два эквивалента металла) комплекс калия с бензофеноном, который тоже есть в осушаемом растворителе
В этом же видео мы впервые тестируем безводный обратный холодильник с металлическим радиатором, который служил загадкой в предыдущем посте. Первый пуск показал, что использовать такой холодильник в жару неэффективно, вопреки рекламным обещаниям.
#бытхимика
#видео
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Forwarded from Химия в России и за рубежом (канал ИОНХ РАН)
Тем временем, наш канал @chemrussia стал первым и единственным на сегодняшний день информационным каналом, посвященным новостям химической науки, который преодолел отметку в 8000 подписчиков! И, практически одновременно, число подписчиков канала «Виртуальный музей химии» @chemmuseum превысило 2000!
Спасибо всем друзьям и коллегам, помогающим нам в развитии этого проекта, спасибо нашим замечательным подписчикам!
#ионх #российскаянаука #инфраструктуранауки #популяризацияхимии
Спасибо всем друзьям и коллегам, помогающим нам в развитии этого проекта, спасибо нашим замечательным подписчикам!
#ионх #российскаянаука #инфраструктуранауки #популяризацияхимии
День в истории химии: Уильям Перкин-младший
165 лет назад, 17 июня 1860 года в Садбери (Мидлсекс, Великобритания) родился Уильям Генри Перкин (младший) (1860-1929). Приставка «младший» говорит о том, что отец нашего героя, Уильям Генри Перкин-старший тоже чем-то был знаменит. И это так - в истории химии Уильям Генри Перкин-старший остался как основоположник химии синтетических красителей. Но сын, который пошел по стопам отца, не посрамил выдающегося родителя. Под руководством Байера синтезировал производные циклопропана и циклобутана, показав, что циклические соединения могут быть не только пяти- и шестичленными, создал методы синтеза полиметиленовых соединений на основе ацетоуксусного, бензоилуксусного и малонового эфиров, синтезировал цис- и транс-циклогександикарбоновые кислоты, изучал терпены, положил начало химии флавонов.
А еще в активе ученого - 15 номинаций на Нобелевскую премию по химии (1911-1929 год). Увы, не сложилось, что никак не умаляет уровня нашего сегодняшнего именинника.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
165 лет назад, 17 июня 1860 года в Садбери (Мидлсекс, Великобритания) родился Уильям Генри Перкин (младший) (1860-1929). Приставка «младший» говорит о том, что отец нашего героя, Уильям Генри Перкин-старший тоже чем-то был знаменит. И это так - в истории химии Уильям Генри Перкин-старший остался как основоположник химии синтетических красителей. Но сын, который пошел по стопам отца, не посрамил выдающегося родителя. Под руководством Байера синтезировал производные циклопропана и циклобутана, показав, что циклические соединения могут быть не только пяти- и шестичленными, создал методы синтеза полиметиленовых соединений на основе ацетоуксусного, бензоилуксусного и малонового эфиров, синтезировал цис- и транс-циклогександикарбоновые кислоты, изучал терпены, положил начало химии флавонов.
А еще в активе ученого - 15 номинаций на Нобелевскую премию по химии (1911-1929 год). Увы, не сложилось, что никак не умаляет уровня нашего сегодняшнего именинника.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Химия на марках. Выпуск 18: юбилей смерти Менделеева
Продолжение осмотра, новые залы «Виртуального музея химии» не означает закрытия старых залов и прекращение старых серий материалов. Мы продолжаем рассказ о почтовых марках и химии. Четный выпуск - а, значит, сегодня пора рассказать о почтовой марке из нашей страны, причем в хронологическом порядке. В прошлый раз мы перешли в 1957 год, рассказав о марке, посвященной 100-летию Алексея Баха. В том же году отмечался еще один химический юбилей: 50 лет со дня смерти Дмитрия Ивановича Менделеева, величайшего химика и renessaince man отечественной науки. В те годы отмечать юбилеи смерти было весьма принято.
Марка, созданная художником и автором эскизов многих почтовых марок того времени, Юрием Гржешкевичем, имела номинал в 40 копеек.
#химиянамарках
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Продолжение осмотра, новые залы «Виртуального музея химии» не означает закрытия старых залов и прекращение старых серий материалов. Мы продолжаем рассказ о почтовых марках и химии. Четный выпуск - а, значит, сегодня пора рассказать о почтовой марке из нашей страны, причем в хронологическом порядке. В прошлый раз мы перешли в 1957 год, рассказав о марке, посвященной 100-летию Алексея Баха. В том же году отмечался еще один химический юбилей: 50 лет со дня смерти Дмитрия Ивановича Менделеева, величайшего химика и renessaince man отечественной науки. В те годы отмечать юбилеи смерти было весьма принято.
Марка, созданная художником и автором эскизов многих почтовых марок того времени, Юрием Гржешкевичем, имела номинал в 40 копеек.
#химиянамарках
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Территория химии. Выпуск 2: памятник Зинаиде Ермольевой в Ростове-на-Дону
Сегодня мы продолжаем пополнение экспонатами нового виртуального зала музея размером во всю Россию и более. Этот зал называется «Территория химии», и в нем мы размещаем научные химические учреждения, памятники и мемориальные доски химикам, химические заводы и другие объекты, связанные с химией на карте.
Сегодня мы с вами и автором нашего проекта, сотрудником ИОНХ РАН им. Н.С. Курнакова, Дмитрием Ямбулатовым, в Ростове-на-Дону, где расположен памятник известному советскому микробиологу, которая стала пионером производства одного важнейшего вещества - пенициллина.
https://chem-museum.ru/territoriya-himii/vypusk-2-pamyatnik-zinaide-ermolevoj-v-rostove-na-donu/
#территорияхимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий.
Сегодня мы продолжаем пополнение экспонатами нового виртуального зала музея размером во всю Россию и более. Этот зал называется «Территория химии», и в нем мы размещаем научные химические учреждения, памятники и мемориальные доски химикам, химические заводы и другие объекты, связанные с химией на карте.
Сегодня мы с вами и автором нашего проекта, сотрудником ИОНХ РАН им. Н.С. Курнакова, Дмитрием Ямбулатовым, в Ростове-на-Дону, где расположен памятник известному советскому микробиологу, которая стала пионером производства одного важнейшего вещества - пенициллина.
https://chem-museum.ru/territoriya-himii/vypusk-2-pamyatnik-zinaide-ermolevoj-v-rostove-na-donu/
#территорияхимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий.
День в истории химии: сэр Френсис Гоуленд Хопкинс
164 года назад родился британский биохимик сэр Френсис Гоуленд Хопкинс, который в 1929 году был удостоен Нобелевской премии по физиологии или медицине. Выбора не стать известным, у него особо не было: прапрадед Хопкинса командовал кораблем во время Трафальгарского сражения. Среди других предков нашего героя можно упомянуть генерала-консула Гавайских островов Мэнли Хопкинса, старший сын которого, Джерард Мэнли Хопкинс, стал известным поэтом.
Семья решила, что Хопкинс будет работать клерком в страховой компании, и он-таки проработал шесть месяцев в офисе, но потом внезапно написал статью о «фиолетовом дыме», который выпускают жуки-бомбардиры. И статью приняли в научный журнал The Entomologist. По словам самого Хопкинса, он «с тех пор биохимик в душе».
С тех пор он занимался многим. Но главное - сначала он открыл неведомую аминокислоту триптофан, потом показал, что она относится к числу незаменимых (и сам ввел это понятие - незаменимые аминокислоты), а потом показал, что, помимо незаменимых аминокислот, для нормального роста организма, нужны еще какие-то вещества. Те самые, о существовании которых догадался врач Христиан Эйкман, исследовавший болезнь бери-бери, те самые, которые польский химик Казимир Функ назвал витаминами. Эйкман получил Нобелевскую премию, Хопкинс - получил, Функ - нет. Так тоже бывает.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
164 года назад родился британский биохимик сэр Френсис Гоуленд Хопкинс, который в 1929 году был удостоен Нобелевской премии по физиологии или медицине. Выбора не стать известным, у него особо не было: прапрадед Хопкинса командовал кораблем во время Трафальгарского сражения. Среди других предков нашего героя можно упомянуть генерала-консула Гавайских островов Мэнли Хопкинса, старший сын которого, Джерард Мэнли Хопкинс, стал известным поэтом.
Семья решила, что Хопкинс будет работать клерком в страховой компании, и он-таки проработал шесть месяцев в офисе, но потом внезапно написал статью о «фиолетовом дыме», который выпускают жуки-бомбардиры. И статью приняли в научный журнал The Entomologist. По словам самого Хопкинса, он «с тех пор биохимик в душе».
С тех пор он занимался многим. Но главное - сначала он открыл неведомую аминокислоту триптофан, потом показал, что она относится к числу незаменимых (и сам ввел это понятие - незаменимые аминокислоты), а потом показал, что, помимо незаменимых аминокислот, для нормального роста организма, нужны еще какие-то вещества. Те самые, о существовании которых догадался врач Христиан Эйкман, исследовавший болезнь бери-бери, те самые, которые польский химик Казимир Функ назвал витаминами. Эйкман получил Нобелевскую премию, Хопкинс - получил, Функ - нет. Так тоже бывает.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
День в истории химии: Сергей Фокин
Ровно 160 лет назад в селе Ртищево-Каменка (ныне - Полбино Ульяновской области, впрочем, другие источники называют местом рождения село Воскресенское близ Казани) родился российский химик и технолог Сергей Алексеевич Фокин (1865-1917). Этот ученик Александра Зайцева прожил очень недолгую жизнь - неполных 52 года, однако успел сделать весьма много. Именно он показал, что присоединение водорода к этилену идет быстрее в присутствии платиновой черни, успел исследовать расщепление жиров ферментом липазой, но главное, он сумел перенести свои работы в практическую плоскость: именно он в 1909 году руководил строительством первой в России установки по гидрированию растительных масел. Фактически - первого маргаринового завода, хотя массовое производство маргарина в СССР начнется лишь в 1930-х годах.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Ровно 160 лет назад в селе Ртищево-Каменка (ныне - Полбино Ульяновской области, впрочем, другие источники называют местом рождения село Воскресенское близ Казани) родился российский химик и технолог Сергей Алексеевич Фокин (1865-1917). Этот ученик Александра Зайцева прожил очень недолгую жизнь - неполных 52 года, однако успел сделать весьма много. Именно он показал, что присоединение водорода к этилену идет быстрее в присутствии платиновой черни, успел исследовать расщепление жиров ферментом липазой, но главное, он сумел перенести свои работы в практическую плоскость: именно он в 1909 году руководил строительством первой в России установки по гидрированию растительных масел. Фактически - первого маргаринового завода, хотя массовое производство маргарина в СССР начнется лишь в 1930-х годах.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий