Telegram Group & Telegram Channel
NanoSage — это продвинутый инструмент для рекурсивного поиска и генерации отчётов, который работает локально на вашем компьютере, используя небольшие языковые модели.


NanoSage представляет собой «глубокого исследовательского ассистента», который:

- Выполняет рекурсивный поиск: система разбивает исходный запрос на подзапросы, чтобы исследовать тему с разных сторон.
- Интегрирует данные из нескольких источников: объединяются результаты локальных документов и веб-поиска, что позволяет получить максимально полное представление по теме.
Генерирует структурированные отчёты: итоговый результат оформляется в виде подробного Markdown-отчёта с оглавлением, отражающим путь исследования.
(См. подробное описание в )

Как работает NanoSage
1. Подготовка и конфигурация
Настройка параметров: с помощью командной строки задаются основные параметры, такие как основной запрос (--query), глубина рекурсии (--max_depth), использование веб-поиска (--web_search) и выбор модели для поиска.

Конфигурация через YAML: дополнительные настройки, например, минимальный порог релевантности, ограничение на длину запроса и др., задаются в конфигурационном файле.
2. Рекурсивный поиск и построение дерева знаний
Расширение запроса: исходный запрос обогащается с помощью метода «chain-of-thought», что позволяет выявить скрытые аспекты темы.
Генерация подзапросов: система автоматически разбивает исходный запрос на несколько релевантных подзапросов, каждый из которых анализируется отдельно.
Фильтрация по релевантности: применяется алгоритм для оценки релевантности каждого подзапроса, что помогает избежать «провалов» и ненужных отклонений от темы.
Сбор данных: для каждого релевантного подзапроса NanoSage загружает веб-страницы, анализирует локальные файлы и суммирует полученную информацию.
3. Генерация финального отчёта
: итоговый отчёт составляется с использованием LLM модели (например, Gemma 2B), которая интегрирует все собранные данные в связное и подробное описание.

- Структурирование информации: результат оформляется в виде Markdown-документа, где оглавление представляет собой граф поискового процесса, а каждый раздел подробно описывает полученные результаты.
(Подробнее о внутренней архитектуре см. и )

- Интеграция разных источников данных:
Объединение информации из веб-ресурсов и локальных документов повышает полноту и точность исследования.

- Баланс глубины и широты поиска:
Использование метода Монте-Карло помогает находить баланс между детальным анализом отдельных аспектов и широким охватом темы.

Гибкость и настройка:
Параметры, такие как выбор модели для поиска, глубина рекурсии и порог релевантности, можно легко настроить под конкретные задачи.

Если вам важны приватность, гибкость и детальный анализ информации, NanoSage может стать отличным решением для ваших исследовательских задач.

Github

#cli #local #algorithms #python3 #knowledgebase #ollama



group-telegram.com/data_analysis_ml/3193
Create:
Last Update:

NanoSage — это продвинутый инструмент для рекурсивного поиска и генерации отчётов, который работает локально на вашем компьютере, используя небольшие языковые модели.


NanoSage представляет собой «глубокого исследовательского ассистента», который:

- Выполняет рекурсивный поиск: система разбивает исходный запрос на подзапросы, чтобы исследовать тему с разных сторон.
- Интегрирует данные из нескольких источников: объединяются результаты локальных документов и веб-поиска, что позволяет получить максимально полное представление по теме.
Генерирует структурированные отчёты: итоговый результат оформляется в виде подробного Markdown-отчёта с оглавлением, отражающим путь исследования.
(См. подробное описание в )

Как работает NanoSage
1. Подготовка и конфигурация
Настройка параметров: с помощью командной строки задаются основные параметры, такие как основной запрос (--query), глубина рекурсии (--max_depth), использование веб-поиска (--web_search) и выбор модели для поиска.

Конфигурация через YAML: дополнительные настройки, например, минимальный порог релевантности, ограничение на длину запроса и др., задаются в конфигурационном файле.
2. Рекурсивный поиск и построение дерева знаний
Расширение запроса: исходный запрос обогащается с помощью метода «chain-of-thought», что позволяет выявить скрытые аспекты темы.
Генерация подзапросов: система автоматически разбивает исходный запрос на несколько релевантных подзапросов, каждый из которых анализируется отдельно.
Фильтрация по релевантности: применяется алгоритм для оценки релевантности каждого подзапроса, что помогает избежать «провалов» и ненужных отклонений от темы.
Сбор данных: для каждого релевантного подзапроса NanoSage загружает веб-страницы, анализирует локальные файлы и суммирует полученную информацию.
3. Генерация финального отчёта
: итоговый отчёт составляется с использованием LLM модели (например, Gemma 2B), которая интегрирует все собранные данные в связное и подробное описание.

- Структурирование информации: результат оформляется в виде Markdown-документа, где оглавление представляет собой граф поискового процесса, а каждый раздел подробно описывает полученные результаты.
(Подробнее о внутренней архитектуре см. и )

- Интеграция разных источников данных:
Объединение информации из веб-ресурсов и локальных документов повышает полноту и точность исследования.

- Баланс глубины и широты поиска:
Использование метода Монте-Карло помогает находить баланс между детальным анализом отдельных аспектов и широким охватом темы.

Гибкость и настройка:
Параметры, такие как выбор модели для поиска, глубина рекурсии и порог релевантности, можно легко настроить под конкретные задачи.

Если вам важны приватность, гибкость и детальный анализ информации, NanoSage может стать отличным решением для ваших исследовательских задач.

Github

#cli #local #algorithms #python3 #knowledgebase #ollama

BY Анализ данных (Data analysis)




Share with your friend now:
group-telegram.com/data_analysis_ml/3193

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices.
from ua


Telegram Анализ данных (Data analysis)
FROM American