Telegram Group & Telegram Channel
Кейс когда топ-манагер оказался далеко не канальей 😎 (правда это был старший вице-президент) , а направил как собрать данных для модели.

Раз в две недели я докладывал топу об успехах советского балета, увеличении надоев и космической программе благодаря внедрению ML, но חלב рано или поздно заканчивается – откуда брать новые фичи для моделей NBO/NBA? Как узнать конкретно почему наше предложение нерелевантное? Это позволит и выборку переразметить и причины попробовать устранить.

Иногда, конечно, приходили на почту поддержки крики души от клиентских менеджеров – в духе “вы там говном упоролись? Зачем мне мне лид про застраховать продукцию клиента? Это рыболовный флот – мне селедку в Атлантическом океане им застраховать?!”.

Короче, сбор обратной связи был реализован специфически – обязательное поле "комментарий", но обычно там стояли прочерки, хотя от людей, не обделенных фантазией, попадались и "пиво, чипсы, водка" -- видимо, что-то им верно подсказывало что читать их комментарии никто не будет. Угадайте наиболее частую категорию – очевидно “прочее”, , и наличие такой категории на первом уровне совсем печально. А процесс выглядел так -- раз в неделю специально обученной даме присылали выгрузку в excel, она выбрала "случайно" -- на самом деле просто первые 10 строк, долго думала и делала слайд с этими 10 комментариями и своих фантазиях о причинах такого фидбека.

А посколько KPI на деньги от моделей был только у меня, то рост конверсии от лидов тоже беспокоил в первую очередь меня (бизнес и так свои бонусы получит -- сетка план как-нибудь да выполнит).

И вот встал вопрос об обратной связи, а непонятно как правильно делать опрос. Позапускали BERTTopic на комментариях к лидам (а их было не так много), поморочили голову бизнесу. Ок, ценовые условия продукта, неценовые условия продукта, решение принимается в другом месте, продукт вообще не применим к клиенту (проектное финансирование тому кто ничего не строит или долгие депозиты компании с большими финансовыми проблемами и тд) и немного других. Переделали формы – не летит.

На очередном докладе шеф лишь вздохнул и отправил читать классику – "Жалоба как подарок” .

Внезапно это оказалось самой полезной книжкой по DS (хотя она вообще вроде бы про другое) за тот квартал. В итоге категорий стало в районе 25, они расположились по уровням, отмечались они галочками, в прочее падало менее 0.2%, поле "комментарий" перестало быть обязательным, на категории сделали модель-классификатор, а у продуктовиков появился инструмент замера фидбеков при запуске нового продукта – прямо в BI вывели как меняются доли отказов по продуктовым условиям, когда конкуренты начинают демпинговать и все в таком духе.

Угадайте, какой самый частый инсайт был для любителей поставить продукт на полку?
Тех. поддержку надо с продуктом поставлять! И вот эта штука существенно растила конверсии. Сложно было без моделей и итераций с обратной связью догадаться, ведь так? :facepalm:

А книжку не устаю рекламировать -- не только в DS поможет 🤓



group-telegram.com/datarascals/147
Create:
Last Update:

Кейс когда топ-манагер оказался далеко не канальей 😎 (правда это был старший вице-президент) , а направил как собрать данных для модели.

Раз в две недели я докладывал топу об успехах советского балета, увеличении надоев и космической программе благодаря внедрению ML, но חלב рано или поздно заканчивается – откуда брать новые фичи для моделей NBO/NBA? Как узнать конкретно почему наше предложение нерелевантное? Это позволит и выборку переразметить и причины попробовать устранить.

Иногда, конечно, приходили на почту поддержки крики души от клиентских менеджеров – в духе “вы там говном упоролись? Зачем мне мне лид про застраховать продукцию клиента? Это рыболовный флот – мне селедку в Атлантическом океане им застраховать?!”.

Короче, сбор обратной связи был реализован специфически – обязательное поле "комментарий", но обычно там стояли прочерки, хотя от людей, не обделенных фантазией, попадались и "пиво, чипсы, водка" -- видимо, что-то им верно подсказывало что читать их комментарии никто не будет. Угадайте наиболее частую категорию – очевидно “прочее”, , и наличие такой категории на первом уровне совсем печально. А процесс выглядел так -- раз в неделю специально обученной даме присылали выгрузку в excel, она выбрала "случайно" -- на самом деле просто первые 10 строк, долго думала и делала слайд с этими 10 комментариями и своих фантазиях о причинах такого фидбека.

А посколько KPI на деньги от моделей был только у меня, то рост конверсии от лидов тоже беспокоил в первую очередь меня (бизнес и так свои бонусы получит -- сетка план как-нибудь да выполнит).

И вот встал вопрос об обратной связи, а непонятно как правильно делать опрос. Позапускали BERTTopic на комментариях к лидам (а их было не так много), поморочили голову бизнесу. Ок, ценовые условия продукта, неценовые условия продукта, решение принимается в другом месте, продукт вообще не применим к клиенту (проектное финансирование тому кто ничего не строит или долгие депозиты компании с большими финансовыми проблемами и тд) и немного других. Переделали формы – не летит.

На очередном докладе шеф лишь вздохнул и отправил читать классику – "Жалоба как подарок” .

Внезапно это оказалось самой полезной книжкой по DS (хотя она вообще вроде бы про другое) за тот квартал. В итоге категорий стало в районе 25, они расположились по уровням, отмечались они галочками, в прочее падало менее 0.2%, поле "комментарий" перестало быть обязательным, на категории сделали модель-классификатор, а у продуктовиков появился инструмент замера фидбеков при запуске нового продукта – прямо в BI вывели как меняются доли отказов по продуктовым условиям, когда конкуренты начинают демпинговать и все в таком духе.

Угадайте, какой самый частый инсайт был для любителей поставить продукт на полку?
Тех. поддержку надо с продуктом поставлять! И вот эта штука существенно растила конверсии. Сложно было без моделей и итераций с обратной связью догадаться, ведь так? :facepalm:

А книжку не устаю рекламировать -- не только в DS поможет 🤓

BY Дата канальи — про «специалистов» в данных / ML / AI




Share with your friend now:
group-telegram.com/datarascals/147

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors.
from ua


Telegram Дата канальи — про «специалистов» в данных / ML / AI
FROM American