Telegram Group & Telegram Channel
Как можно улучшить ответы языковых моделей? Гайд по промтам

Сегодня качество ответов языковых моделей напрямую зависит от того, как сформулирован запрос. Новейшие LLM (large language model, большая языковая модель) уже неплохо справляются с неточными формулировками, но в большинстве случаев для успешной коммуникации с нейросетями всё ещё необходимы специальные методы и качественные промты. О том, как сформулировать запросы для языковых моделей, рассказываем в новом гайде.

👌🏻 Zero-shot prompting

Простые и короткие запросы к моделям приведут к выдаче простых и стандартных ответы. Например, есть запрос без примеров (zero-shot prompting): в этом случае мы рассчитываем на качество модели, на ее системные установки. Такие запросы хорошо работают для популярных запросов, для которых обучали модель (например, суммаризация текста или предварительный анализ данных).

✌🏻 One/few shot prompting

Если вы хотите получить от модели более развернутый и глубокий ответ в определенном формате/стиле, то при помощи одного или нескольких примеров (подсказок) необходимо явно показать, чего вы от нее ждете. Такой метод формулирования запросов называется one/few shot prompting. Примеры актуализирует в контексте модели более глубокие связи, которые были построены ею в процессе обучения, что в итоге помогает добиться ответа, который точнее соответствует запросу.

🙌🏻 Chain-of-Thought

Для решения сложных логических или математических задач используется техника chain-of-thought, или цепочка рассуждений (мы уже рассказывали о ней здесь). Простейший способ задействовать эту технику — прямо обозначить ее в запросе, используя выражения-маркеры вроде: «Давай думать шаг за шагом». В более сложных случаях можно задать для модели логику рассуждения, последовательность действий и этапы проверки.

Сравнить ответы языковой модели на одни и те же запросы, сформулированные с помощью разных методов, и узнать, что мотивировало ChatGPT-4o написать в обращении письма «Многоуважаемый и всечестнейший Профессор», можно, перейдя к полной версии статьи.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/digital_philologist/212
Create:
Last Update:

Как можно улучшить ответы языковых моделей? Гайд по промтам

Сегодня качество ответов языковых моделей напрямую зависит от того, как сформулирован запрос. Новейшие LLM (large language model, большая языковая модель) уже неплохо справляются с неточными формулировками, но в большинстве случаев для успешной коммуникации с нейросетями всё ещё необходимы специальные методы и качественные промты. О том, как сформулировать запросы для языковых моделей, рассказываем в новом гайде.

👌🏻 Zero-shot prompting

Простые и короткие запросы к моделям приведут к выдаче простых и стандартных ответы. Например, есть запрос без примеров (zero-shot prompting): в этом случае мы рассчитываем на качество модели, на ее системные установки. Такие запросы хорошо работают для популярных запросов, для которых обучали модель (например, суммаризация текста или предварительный анализ данных).

✌🏻 One/few shot prompting

Если вы хотите получить от модели более развернутый и глубокий ответ в определенном формате/стиле, то при помощи одного или нескольких примеров (подсказок) необходимо явно показать, чего вы от нее ждете. Такой метод формулирования запросов называется one/few shot prompting. Примеры актуализирует в контексте модели более глубокие связи, которые были построены ею в процессе обучения, что в итоге помогает добиться ответа, который точнее соответствует запросу.

🙌🏻 Chain-of-Thought

Для решения сложных логических или математических задач используется техника chain-of-thought, или цепочка рассуждений (мы уже рассказывали о ней здесь). Простейший способ задействовать эту технику — прямо обозначить ее в запросе, используя выражения-маркеры вроде: «Давай думать шаг за шагом». В более сложных случаях можно задать для модели логику рассуждения, последовательность действий и этапы проверки.

Сравнить ответы языковой модели на одни и те же запросы, сформулированные с помощью разных методов, и узнать, что мотивировало ChatGPT-4o написать в обращении письма «Многоуважаемый и всечестнейший Профессор», можно, перейдя к полной версии статьи.

🤖 «Системный Блокъ» @sysblok

BY Цифровой филолог👩‍💻




Share with your friend now:
group-telegram.com/digital_philologist/212

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours.
from ua


Telegram Цифровой филолог👩‍💻
FROM American