Telegram Group & Telegram Channel
InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation #style_transfer #paper

Статья (июнь 2024) про стилизацию картинок в задачах image-to-image. Вторая статья в серии статей (InstantStyle, InstantStyle-Plus, CSGO) от этих же авторов. На вход принимается картинка стиля (образец) и исходная картинка объекта, который хотим менять. На выход выдается сгенерированная картинка, в которой исходный объект перерисован в другом стиле.

В статье много раз отмечается, что основной фокус сделан на сохранении исходного объекта, чтобы вносить в него как можно меньше искажений при изменении стиля. Cистема построена на основе SDXL, fine-tuning не требуется, вся работа — в режиме инференса.

Обуславливание выполняется одновременно за счет нескольких механизмов:

для контента:
- картинка объекта переводится в латентное пространство и там делается инверсия в зашумленное состояние (используется модель ReNoise). С этого нового начального состояния начинается процесс денойзинга.
- картинка объекта проходит через Tile ControlNet (особый вид ControlNet, изначально предназначен для upscaling, предобучен на больших картинках, составленных из повторяющихся маленьких картинок) и подается на каждом шаге денойзинга через cross-attention.
- картинка объекта проходит через Image Adapter (IP-Adapter) и тоже подается на каждом шаге денойзинга через cross-attention.

для стиля:
- картинка стиля проходит через Style Adapter (IP-Adapter) и подается на каждом шаге денойзинга через cross-attention (в соответствии с рекомендациями InstantStyle — только в один конкретный блок U-net).
- на каждом шаге результат сравнивается с картинкой стиля через CLIP Style Similarity, и эта разность используется в качестве guidance на следующих шагах денойзинга.

🔥Project Page
💻Github
📜Paper

@gentech_lab
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/gentech_lab/71
Create:
Last Update:

InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation #style_transfer #paper

Статья (июнь 2024) про стилизацию картинок в задачах image-to-image. Вторая статья в серии статей (InstantStyle, InstantStyle-Plus, CSGO) от этих же авторов. На вход принимается картинка стиля (образец) и исходная картинка объекта, который хотим менять. На выход выдается сгенерированная картинка, в которой исходный объект перерисован в другом стиле.

В статье много раз отмечается, что основной фокус сделан на сохранении исходного объекта, чтобы вносить в него как можно меньше искажений при изменении стиля. Cистема построена на основе SDXL, fine-tuning не требуется, вся работа — в режиме инференса.

Обуславливание выполняется одновременно за счет нескольких механизмов:

для контента:
- картинка объекта переводится в латентное пространство и там делается инверсия в зашумленное состояние (используется модель ReNoise). С этого нового начального состояния начинается процесс денойзинга.
- картинка объекта проходит через Tile ControlNet (особый вид ControlNet, изначально предназначен для upscaling, предобучен на больших картинках, составленных из повторяющихся маленьких картинок) и подается на каждом шаге денойзинга через cross-attention.
- картинка объекта проходит через Image Adapter (IP-Adapter) и тоже подается на каждом шаге денойзинга через cross-attention.

для стиля:
- картинка стиля проходит через Style Adapter (IP-Adapter) и подается на каждом шаге денойзинга через cross-attention (в соответствии с рекомендациями InstantStyle — только в один конкретный блок U-net).
- на каждом шаге результат сравнивается с картинкой стиля через CLIP Style Similarity, и эта разность используется в качестве guidance на следующих шагах денойзинга.

🔥Project Page
💻Github
📜Paper

@gentech_lab

BY Gentech Lab






Share with your friend now:
group-telegram.com/gentech_lab/71

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market.
from ua


Telegram Gentech Lab
FROM American