Telegram Group & Telegram Channel
🔷 تخمین، احتمال، نرخ‌های پایه

▪️به این سؤال توجه کنید:
بیماری‌ مشخصی به‌طور میان‌گین یک نفر از هر هزار نفر را مبتلا می‌کند. برای تشخیص این بیماری آزمایشی پزشکی طراحی شده است. آزمایش در پنج درصد موارد خطا دارد، به این معنی که نتیجه‌اش برای شخصی که بیمار نیست مثبت می‌شود. فرض کنید به شخصی برمی‌خورید که نتیجه‌ٔ آزمایش‌اش مثبت است. شما چیزی در مورد بیماری و علائم آن نمی‌دانید و فقط بر مبنای نتیجهٔ‌ آزمایش و اطلاعات آماری قضاوت می‌کنید. چند درصد احتمال دارد که این شخص واقعاً بیمار باشد؟ *

▪️بسیاری از ما خواسته یا ناخواسته بر اساس اطلاعات موجود احتمال وقوع پدیده‌ها را تخمین می‌زنیم ولی خیلی‌ وقت‌ها بخش مهمی از اطلاعات را نادیده می‌گیریم. مثلاً در پرسش بالا اغلب به جمله‌ٔ اول توجه نمی‌شود و پاسخی که داده می‌‌شود چیزی در حدود ۹۵ درصد است. درحالی‌که پاسخ درست حدود ۲ درصد است! بله، درست است. در این مثال فقط ۲ درصد احتمال دارد که شخصی که جواب آزمایش‌اش مثبت است واقعاً بیمار باشد.

پاسخ این سؤال را می‌توان به سادگی با استفاده از قاعده‌ی بِیز (Bayes' rule) در نظریه‌ٔ احتمال پیدا کرد ولی حتی کسانی که با نظریه‌ٔ‌ احتمال آشنا نیستند هم با کمی تأمل و دقت به جمله‌ٔ اول سؤال می‌توانند جواب درست را پیدا کنند. اطلاعات جمله‌ٔ اول (ابتلای یک نفر از هر هزار نفر به بیماری) در نظریه‌ٔ احتمال نرخ پایه (base rate) نامیده می‌شود. دانیل کانمن و آموس تورسکی در دهه‌ٔ ۱۹۷۰ میلادی نشان دادند که بی‌توجهی به نرخ‌های پایه می‌تواند به‌ تخمین‌هایی بسیار متفاوت با واقعیت بینجامد.

به‌عنوان یک مثال دیگر فرض کنید یک الگوریتم تشخیص چهره، با استفاده از تصاویر ثبت شده در دوربین مدار بسته، چهره‌ٔ شخصی را به‌عنوان یک تروریست شناسایی می‌کند. اگر احتمال خطای الگوریتم کمتر از یک درصد باشد، چه‌قدر احتمال دارد که شخص شناسایی شده واقعاً تروریست باشد؟ نرخ پایه در این مثال چیست؟ 

▪️تخمین نادرست یا کم‌دقت می‌تواند بسیار هزینه‌ساز باشد. بهتر نیست کمی بیشتر مراقب حدس‌ها و برآوردهایمان باشیم؟ 

* این مثال را می‌توان در مراجع متعددی پیدا کرد که سرچشمهٔ همه‌ٔ آن‌ها مقالهٔ زیر است. نگاهی به آن خالی از لطف نیست:

Amos Tversky  and Daniel Kahneman, “Evidential Impact of Base Rates” (1981).

@k1samani_channel



group-telegram.com/k1samani_channel/55
Create:
Last Update:

🔷 تخمین، احتمال، نرخ‌های پایه

▪️به این سؤال توجه کنید:
بیماری‌ مشخصی به‌طور میان‌گین یک نفر از هر هزار نفر را مبتلا می‌کند. برای تشخیص این بیماری آزمایشی پزشکی طراحی شده است. آزمایش در پنج درصد موارد خطا دارد، به این معنی که نتیجه‌اش برای شخصی که بیمار نیست مثبت می‌شود. فرض کنید به شخصی برمی‌خورید که نتیجه‌ٔ آزمایش‌اش مثبت است. شما چیزی در مورد بیماری و علائم آن نمی‌دانید و فقط بر مبنای نتیجهٔ‌ آزمایش و اطلاعات آماری قضاوت می‌کنید. چند درصد احتمال دارد که این شخص واقعاً بیمار باشد؟ *

▪️بسیاری از ما خواسته یا ناخواسته بر اساس اطلاعات موجود احتمال وقوع پدیده‌ها را تخمین می‌زنیم ولی خیلی‌ وقت‌ها بخش مهمی از اطلاعات را نادیده می‌گیریم. مثلاً در پرسش بالا اغلب به جمله‌ٔ اول توجه نمی‌شود و پاسخی که داده می‌‌شود چیزی در حدود ۹۵ درصد است. درحالی‌که پاسخ درست حدود ۲ درصد است! بله، درست است. در این مثال فقط ۲ درصد احتمال دارد که شخصی که جواب آزمایش‌اش مثبت است واقعاً بیمار باشد.

پاسخ این سؤال را می‌توان به سادگی با استفاده از قاعده‌ی بِیز (Bayes' rule) در نظریه‌ٔ احتمال پیدا کرد ولی حتی کسانی که با نظریه‌ٔ‌ احتمال آشنا نیستند هم با کمی تأمل و دقت به جمله‌ٔ اول سؤال می‌توانند جواب درست را پیدا کنند. اطلاعات جمله‌ٔ اول (ابتلای یک نفر از هر هزار نفر به بیماری) در نظریه‌ٔ احتمال نرخ پایه (base rate) نامیده می‌شود. دانیل کانمن و آموس تورسکی در دهه‌ٔ ۱۹۷۰ میلادی نشان دادند که بی‌توجهی به نرخ‌های پایه می‌تواند به‌ تخمین‌هایی بسیار متفاوت با واقعیت بینجامد.

به‌عنوان یک مثال دیگر فرض کنید یک الگوریتم تشخیص چهره، با استفاده از تصاویر ثبت شده در دوربین مدار بسته، چهره‌ٔ شخصی را به‌عنوان یک تروریست شناسایی می‌کند. اگر احتمال خطای الگوریتم کمتر از یک درصد باشد، چه‌قدر احتمال دارد که شخص شناسایی شده واقعاً تروریست باشد؟ نرخ پایه در این مثال چیست؟ 

▪️تخمین نادرست یا کم‌دقت می‌تواند بسیار هزینه‌ساز باشد. بهتر نیست کمی بیشتر مراقب حدس‌ها و برآوردهایمان باشیم؟ 

* این مثال را می‌توان در مراجع متعددی پیدا کرد که سرچشمهٔ همه‌ٔ آن‌ها مقالهٔ زیر است. نگاهی به آن خالی از لطف نیست:

Amos Tversky  and Daniel Kahneman, “Evidential Impact of Base Rates” (1981).

@k1samani_channel

BY دِرَنـــگ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/k1samani_channel/55

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. Telegram Messenger Blocks Navalny Bot During Russian Election
from ua


Telegram دِرَنـــگ
FROM American