Telegram Group & Telegram Channel
кружочек
срочно в номер! в среду состоится внеочередное заседание кружочка! приезжайте кто успеет [9 октября (СРЕДА), 16:15, ауд. 302] Андрей Рябичев, "Константа 42 в гиперболической и комплексной геометрии" Недавно я разобрал будоражащий факт, откуда число 42 берётся…
видео вот https://www.youtube.com/watch?v=ZZYoCN_xzUg

и комментарий: в самом конце доклада Наташа повторила свой вопрос, для каких g оценка 42(2g-2) является точной. назовём их хорошими. я попробовал порассуждать и привёл два аргумента, оба из которых по-видимому неверные.

во-первых, g=2 вроде бы плохое — не существует метрики на поверхности рода 2, имеющей 84 изометрии. такая поверхность действительно разветвлённо накрывала бы сферу с коническими особенностями индексов 2, 3 и 7, но поиск такого накрытия — проблема Гурвица (а именно — представить перестановку циклового типа <2,2,...,2> на 84 элементах в виде произведения перестановки типа <3,...,3> и перестановки типа <7,...,7>), её люди решать в общем случае не умеют.

с другой стороны, есть пример для g=3, когда изометрий 168, см [Farb, Margalit. A primer on mapping class groups, самый конец §7.3]. пока я не понимаю как он устроен, круто если кто-то умеет в такие вещи и может прийти и объяснить.

а во-вторых, если поверхность S накрывает n-листно поверхность S', то не всякий гомеоморфизм S' может подниматься до гомеоморфизма S. даже если это накрытие Галуа (нормальное), образ π₁(S) же не обязательно сохраняется при гомеоморфизме S'. то есть у S по идее может быть не в n раз больше изометрий.

причём (детективная история!) Фарб-Маргалит тоже говорят, что поверхности, для которых оценка 42(2g-2) точна, можно размножать нормальными накрытиями. а этот аргумент неверен — сразу же после этого они приводят ссылку, что хороших g примерно столько же, сколько точных кубов [Michael Larsen. How often is 84(g−1) achieved?], довольно свежую, хотя я сам пока не понимаю что там написано тоже, здорово если кто-нибудь сможет разобрать и пересказать как они это делают.

вообще пишут, уже лет шестьдесят известно, что и плохих g, и хороших g бесконечно много. а конкретный результат звучит так: сумма Σ 1/g^s по всем хорошим g конечна, если s>1/3, а при s≤1/3 ряд расходится. в частности, последовательность хороших g не может содержать бесконечных арифметических прогрессий, поэтому-то размножать хорошие поверхности накрытиями не получится.

вот так, прикиньте! математика



group-telegram.com/kruzhochek179/569
Create:
Last Update:

видео вот https://www.youtube.com/watch?v=ZZYoCN_xzUg

и комментарий: в самом конце доклада Наташа повторила свой вопрос, для каких g оценка 42(2g-2) является точной. назовём их хорошими. я попробовал порассуждать и привёл два аргумента, оба из которых по-видимому неверные.

во-первых, g=2 вроде бы плохое — не существует метрики на поверхности рода 2, имеющей 84 изометрии. такая поверхность действительно разветвлённо накрывала бы сферу с коническими особенностями индексов 2, 3 и 7, но поиск такого накрытия — проблема Гурвица (а именно — представить перестановку циклового типа <2,2,...,2> на 84 элементах в виде произведения перестановки типа <3,...,3> и перестановки типа <7,...,7>), её люди решать в общем случае не умеют.

с другой стороны, есть пример для g=3, когда изометрий 168, см [Farb, Margalit. A primer on mapping class groups, самый конец §7.3]. пока я не понимаю как он устроен, круто если кто-то умеет в такие вещи и может прийти и объяснить.

а во-вторых, если поверхность S накрывает n-листно поверхность S', то не всякий гомеоморфизм S' может подниматься до гомеоморфизма S. даже если это накрытие Галуа (нормальное), образ π₁(S) же не обязательно сохраняется при гомеоморфизме S'. то есть у S по идее может быть не в n раз больше изометрий.

причём (детективная история!) Фарб-Маргалит тоже говорят, что поверхности, для которых оценка 42(2g-2) точна, можно размножать нормальными накрытиями. а этот аргумент неверен — сразу же после этого они приводят ссылку, что хороших g примерно столько же, сколько точных кубов [Michael Larsen. How often is 84(g−1) achieved?], довольно свежую, хотя я сам пока не понимаю что там написано тоже, здорово если кто-нибудь сможет разобрать и пересказать как они это делают.

вообще пишут, уже лет шестьдесят известно, что и плохих g, и хороших g бесконечно много. а конкретный результат звучит так: сумма Σ 1/g^s по всем хорошим g конечна, если s>1/3, а при s≤1/3 ряд расходится. в частности, последовательность хороших g не может содержать бесконечных арифметических прогрессий, поэтому-то размножать хорошие поверхности накрытиями не получится.

вот так, прикиньте! математика

BY кружочек




Share with your friend now:
group-telegram.com/kruzhochek179/569

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.”
from ua


Telegram кружочек
FROM American