Telegram Group & Telegram Channel
🚀 Опубликовали наш новый препринт: GigaCheck: Detecting LLM-generated Content 📄
Технология та же, что и в продукте, но перенесли на открытые модели и англоязычные тексты.

TL;DR Вынесли вообще всех.

Давайте по деталям.
В статье мы выделяем две подзадачи: определяем, написан ли текст человеком или генеративной моделью (LLM) и находим конкретные AI-интервалы 🤖

🔍 Первая задача — классификация текста — решается с помощью файнтюна LLM модели общего назначения. В исследовании мы использовали высокопроизводительную Mistral-7B, которая превосходит другие модели аналогичного размера во многих задачах.

🔎 Вторая задача — детекция AI-интервалов — решается нами с помощью модели DN-DAB-DETR, адаптированной из области компьютерного зрения. DETR модель обучается на фичах от зафайнтюненной LLM, однако, если данных для обучения LLM на классификацию недостаточно, используем фичи от исходной Mistral-7B-v0.3

Для подтверждения эффективности методов мы провели обширные эксперименты на различных датасетах. На пяти классификационных наборах данных обученные нами модели продемонстрировали SOTA результаты, а также показали высокие метрики в out-of-distribution экспериментах, работая с данными из доменов, отличающихся от встречавшихся в обучении, или от генераторов, не участвующих в создании обучающей выборки. Наша модель также успешно обошла Paraphrasing Attack🛡️

📊 Для оценки DETR детектора мы использовали четыре набора данных: RoFT, RoFT-chatgpt, CoAuthor и TriBERT.
Первые два датасета ориентированы на поиск границы между частями текста, написанными человеком и AI, второй содержит произвольное количество интервалов для каждого текста, третий — один или два интервала.
📝 Для корректного сравнения с другими работами мы переводим наши предсказания из интервального вида к предложениям.
🎉 Во всех экспериментах, включая out-of-domain, предложенный нами подход показал выдающиеся результаты!
До нас ещё никто не применял Detection Transformer для анализа сгенерированного текстового контента.

CV-шники идут в NLP 😎

Мы надеемся, что наш метод вдохновит будущих исследователей! 📈

📖 Статья тут
🌐 Лендинг тут
🤖 Телеграм-бот тут



group-telegram.com/layercv/135
Create:
Last Update:

🚀 Опубликовали наш новый препринт: GigaCheck: Detecting LLM-generated Content 📄
Технология та же, что и в продукте, но перенесли на открытые модели и англоязычные тексты.

TL;DR Вынесли вообще всех.

Давайте по деталям.
В статье мы выделяем две подзадачи: определяем, написан ли текст человеком или генеративной моделью (LLM) и находим конкретные AI-интервалы 🤖

🔍 Первая задача — классификация текста — решается с помощью файнтюна LLM модели общего назначения. В исследовании мы использовали высокопроизводительную Mistral-7B, которая превосходит другие модели аналогичного размера во многих задачах.

🔎 Вторая задача — детекция AI-интервалов — решается нами с помощью модели DN-DAB-DETR, адаптированной из области компьютерного зрения. DETR модель обучается на фичах от зафайнтюненной LLM, однако, если данных для обучения LLM на классификацию недостаточно, используем фичи от исходной Mistral-7B-v0.3

Для подтверждения эффективности методов мы провели обширные эксперименты на различных датасетах. На пяти классификационных наборах данных обученные нами модели продемонстрировали SOTA результаты, а также показали высокие метрики в out-of-distribution экспериментах, работая с данными из доменов, отличающихся от встречавшихся в обучении, или от генераторов, не участвующих в создании обучающей выборки. Наша модель также успешно обошла Paraphrasing Attack🛡️

📊 Для оценки DETR детектора мы использовали четыре набора данных: RoFT, RoFT-chatgpt, CoAuthor и TriBERT.
Первые два датасета ориентированы на поиск границы между частями текста, написанными человеком и AI, второй содержит произвольное количество интервалов для каждого текста, третий — один или два интервала.
📝 Для корректного сравнения с другими работами мы переводим наши предсказания из интервального вида к предложениям.
🎉 Во всех экспериментах, включая out-of-domain, предложенный нами подход показал выдающиеся результаты!
До нас ещё никто не применял Detection Transformer для анализа сгенерированного текстового контента.

CV-шники идут в NLP 😎

Мы надеемся, что наш метод вдохновит будущих исследователей! 📈

📖 Статья тут
🌐 Лендинг тут
🤖 Телеграм-бот тут

BY The Layer


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/layercv/135

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee.
from ua


Telegram The Layer
FROM American