Telegram Group & Telegram Channel
Так вот — в 1998 году на Летнюю Конференцию Турнира Городов Серёжа Маркелов предлагает задачу с большим словарём подобных задач (представляет её Михаил Вялый, помогает Вадим Бугаенко). Вот ещё один пример оттуда:

Задача 3а. Пусть даны две концентрические окружности. Выберем на внешней из них точку M. Фигура C_M образована двумя касательными из точки M к внутренней окружности и дугой этой окружности, заключённой между точками касания (см. рис. 3а). Докажите, что площадь фигуры C_M не зависит от выбора точки M.

Задача 3б. Пусть даны две параболы с общей осью, отличающиеся на сдвиг вдоль этой оси. Выберем на внешней из них точку M. Фигура P_M образована двумя касательными из точки M к внутренней параболе и дугой этой параболы, заключённой между точками касания (см. рис. 3б). Докажите, что площадь фигуры З_M не зависит от выбора точки M.

Изображения: рисунок к задаче и текст, предваряющий решения задачи, из материалов ЛКТГ.
(image credit: С. Маркелов, Парабола как окружность, https://turgor.ru/lktg/1998/lktg1998.pdf ; Десятая конференция ЛКТГ, М.: МЦНМО, 1999.)



group-telegram.com/mathtabletalks/4617
Create:
Last Update:

Так вот — в 1998 году на Летнюю Конференцию Турнира Городов Серёжа Маркелов предлагает задачу с большим словарём подобных задач (представляет её Михаил Вялый, помогает Вадим Бугаенко). Вот ещё один пример оттуда:

Задача 3а. Пусть даны две концентрические окружности. Выберем на внешней из них точку M. Фигура C_M образована двумя касательными из точки M к внутренней окружности и дугой этой окружности, заключённой между точками касания (см. рис. 3а). Докажите, что площадь фигуры C_M не зависит от выбора точки M.

Задача 3б. Пусть даны две параболы с общей осью, отличающиеся на сдвиг вдоль этой оси. Выберем на внешней из них точку M. Фигура P_M образована двумя касательными из точки M к внутренней параболе и дугой этой параболы, заключённой между точками касания (см. рис. 3б). Докажите, что площадь фигуры З_M не зависит от выбора точки M.

Изображения: рисунок к задаче и текст, предваряющий решения задачи, из материалов ЛКТГ.
(image credit: С. Маркелов, Парабола как окружность, https://turgor.ru/lktg/1998/lktg1998.pdf ; Десятая конференция ЛКТГ, М.: МЦНМО, 1999.)

BY Математические байки






Share with your friend now:
group-telegram.com/mathtabletalks/4617

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market.
from ua


Telegram Математические байки
FROM American