Notice: file_put_contents(): Write of 4358 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 12550 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Запрети мне псевдолейблить | Telegram Webview: pseudolabeling/163 -
Telegram Group & Telegram Channel
Что за HNSW такой?

Базовый подход, на котором работает Qdrant, — это HNSW (Hierarchical Navigable Small World). Давайте разберёмся, что это такое и как оно работает.

Small world graphs — это такие графы, которые характеризуются высоким коэффициентом кластеризации и малым расстоянием между любой парой вершин. Navigable Small World использует эти свойства для поиска ближайших соседей в многомерном пространстве. Представим, что мы строим такую структуру на наших эмбеддингах, чтобы перемещаться по ней было эффективно. Как добиться этой эффективности?

Начинаем с эмбеддинга случайного объекта из нашей базы и шагаем по рёбрам графа в сторону эмбеддинга-запроса, пока не сойдёмся к локальному минимуму. Для каждой пары эмбедингов мы можем посчитать расстояние, так что идти в сторону ближайшего к эмбедингу-запросу вполне себе можем на каждом шаге. Если бы мы связали ребрами все эмбеддинги, каждый с каждым, то минимальное расстояние находилось бы за один шаг, но пришлось бы просмотреть n дистанций. Если связать все эмбеддинги в двусвязный список, то на каждом шаге будет выполняться только одно сравнение, но шагов придётся сделать столько, сколько у нас точек, что тоже не очень эффективно. Зато уже n/2 в среднем! Как найти баланс? Никак, надо тестить на каждой новой базе

Но есть некоторое соображение: рёбра "средней длины" в графе часто оказываются наименее полезными. По ним мы движемся к точке с умеренной скоростью, но их слишком много, и приходится делать много шагов. Это как передвигаться на автобусе в пределах МКАДа — долго и автобусов слишком много, так что приходится делать кучу пересадок. Легче доехать на метро до нужной станции, а затем сделать последнюю милю на самокате.
Так что, построим наш граф поиска следующим образом:

1. Посчитаем расстояние от каждого объекта до каждого.
2. Возьмём случайный объект из базы и проверим, есть ли он в нашем графе поиска. Если есть — пропускаем. В первом прогоне его, конечно, там нет, но дальше цикл будет работать.
3. Возьмём X процентов ближайших объектов к целевому и построим между ними рёбра.
4. Сделаем то же самое с Y процентами самых дальних объектов.
5. Повторяем с пункта 2, пока не добавим в граф все объекты из базы.

Теперь на первых шагах мы будем часто пользоваться длинным ребрами, и в конце искать оптимум за счет коротких.
Да, в редких случаях (скажем, в 1% случаев) мы не найдём самого ближайшего соседа, но зато будем работать гораздо быстрее — скажем, в 12 раз. Конечно, всё сильно зависит от реализации, но ускорение впечатляет.

Вот и получается, что HNSW позволяет балансировать между количеством шагов и сравнений, что делает его отличным выбором для поиска ближайших соседей в больших базах данных.

А еще HNSW- в русской раскладке это РТЫЦ. Живите с этим



group-telegram.com/pseudolabeling/163
Create:
Last Update:

Что за HNSW такой?

Базовый подход, на котором работает Qdrant, — это HNSW (Hierarchical Navigable Small World). Давайте разберёмся, что это такое и как оно работает.

Small world graphs — это такие графы, которые характеризуются высоким коэффициентом кластеризации и малым расстоянием между любой парой вершин. Navigable Small World использует эти свойства для поиска ближайших соседей в многомерном пространстве. Представим, что мы строим такую структуру на наших эмбеддингах, чтобы перемещаться по ней было эффективно. Как добиться этой эффективности?

Начинаем с эмбеддинга случайного объекта из нашей базы и шагаем по рёбрам графа в сторону эмбеддинга-запроса, пока не сойдёмся к локальному минимуму. Для каждой пары эмбедингов мы можем посчитать расстояние, так что идти в сторону ближайшего к эмбедингу-запросу вполне себе можем на каждом шаге. Если бы мы связали ребрами все эмбеддинги, каждый с каждым, то минимальное расстояние находилось бы за один шаг, но пришлось бы просмотреть n дистанций. Если связать все эмбеддинги в двусвязный список, то на каждом шаге будет выполняться только одно сравнение, но шагов придётся сделать столько, сколько у нас точек, что тоже не очень эффективно. Зато уже n/2 в среднем! Как найти баланс? Никак, надо тестить на каждой новой базе

Но есть некоторое соображение: рёбра "средней длины" в графе часто оказываются наименее полезными. По ним мы движемся к точке с умеренной скоростью, но их слишком много, и приходится делать много шагов. Это как передвигаться на автобусе в пределах МКАДа — долго и автобусов слишком много, так что приходится делать кучу пересадок. Легче доехать на метро до нужной станции, а затем сделать последнюю милю на самокате.
Так что, построим наш граф поиска следующим образом:

1. Посчитаем расстояние от каждого объекта до каждого.
2. Возьмём случайный объект из базы и проверим, есть ли он в нашем графе поиска. Если есть — пропускаем. В первом прогоне его, конечно, там нет, но дальше цикл будет работать.
3. Возьмём X процентов ближайших объектов к целевому и построим между ними рёбра.
4. Сделаем то же самое с Y процентами самых дальних объектов.
5. Повторяем с пункта 2, пока не добавим в граф все объекты из базы.

Теперь на первых шагах мы будем часто пользоваться длинным ребрами, и в конце искать оптимум за счет коротких.
Да, в редких случаях (скажем, в 1% случаев) мы не найдём самого ближайшего соседа, но зато будем работать гораздо быстрее — скажем, в 12 раз. Конечно, всё сильно зависит от реализации, но ускорение впечатляет.

Вот и получается, что HNSW позволяет балансировать между количеством шагов и сравнений, что делает его отличным выбором для поиска ближайших соседей в больших базах данных.

А еще HNSW- в русской раскладке это РТЫЦ. Живите с этим

BY Запрети мне псевдолейблить




Share with your friend now:
group-telegram.com/pseudolabeling/163

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." For tech stocks, “the main thing is yields,” Essaye said. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke.
from ua


Telegram Запрети мне псевдолейблить
FROM American