Notice: file_put_contents(): Write of 5456 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 13648 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Сиолошная | Telegram Webview: seeallochnaya/1261 -
Telegram Group & Telegram Channel
Интересная ситуация произошла в Твиттере (но на самом деле она часто проходит и в комментах тут, и в других ТГ-каналах).

5 апреля: VictorTaelin придумал задачку, которую GPT НИКОГДА (он прям выделил) не сможет решить. Почему? Потому что модель же тупая, она не умеет рассуждать и решать задачи, на которых не была натренирована. Узнали себя или критиков из комментариев? 🙂
Для него такая задача и невозможность её решения якобы служила примером того, что модель никогда не сможет двигать науку: «если 15-летний подросток уничтожает модель в какой-либо интеллектуальной задаче вроде этой, то я не буду особо верить в то, что она сможет вылечить рак». Само заявление конечно странное, но допустим (на самом деле он пытался найти такую задачу, которую человек решает, а машина нет — что опять же глупо, люди не умеют то, что может калькулятор — и что?).

Что за задача? Есть 4 символа, B# A# #A #B. Если две разные буквы в некотором наборе символов повёрнуты друг к другу решётками, то их надо поменять местами. B# #A -> #A B#, и так далее, пока никакие два символа нельзя обработать. Сможет ли генеративная LLMка разобраться и решить задачу для строки из, скажем, 7 символов? Автор попробовал несколько раз и у него не вышло. Всё, дело закрыто, AI - хайп, пузырь.

6 апреля: после волны недовольства в комментариях, а также демонстрации того, что иногда модель решает (особенно если немного поменять условие и/или добавить интерпретатор кода, чтобы модель, ну вы знаете, могла писать программы), автор решил сделать конкурс на $10'000. Полные правила можно найти текстом вот тут. Правда он усложнил задачу — теперь символов в такой строке 12 (то есть нужно сделать от 0 до 24 шагов для решения), подаётся 50 примеров, и нужно, чтобы модель решила как минимум 45/50. 12 символов потому, что ему уже показали, что строки длины 7 решаются (иногда).

Главное ограничение — модель не должна писать код, решение должно быть полностью текстовое. Само по себе это глупо, ведь мы отбираем у модели инструмент, которым а) она умеет пользоваться б) хорошо подходит для таких задач. Блин, языки программирования и были придуманы для алгоритмизации задач со строгими правилами! Ну ладно. Считайте, что задача — забить гвоздь, но кувалды и молотки запрещены.

7 апреля: модели решают <10% задач (5 из 50), однако у двух авторов получилось выбить 29/50. Интересно, что тут вырвались вперёд модели Anthropic семейства Claude 3.

8 апреля: конкурс окончен, промпт одного из участников стабильно решает более 90% задач (47 из 50 при первом запуске). Напомню, что задачи даже более сложные, чем в изначальном твите (они длиннее), а главный инструмент решения выключен. Автор признал, что был не прав. Он также указал, что действительно верил, что LLM, аналогичные GPT, просто не могут решить такие задачи.

Автор признал, что его изначальные верования были неправильными, он ошибся. Решение задачи, конечно, не доказывает, что модели смогут придумать лекарства от рака, но они точно могут решать логические-алгоритмические задачи, которые не видели раньше (в целом не новость, но не все верят ведь!).

Интересный факт: финальное решение работает на модели Claude 3 Opus, но ни одно из топ-решений не было на GPT-4. Может, Anthropic уже используют новую архитектуру, которая лишена некоторых недостатков своих предков? Или OpenAI сильно урезают косты и ужимают модели? Возможно, узнаем в будущем — так же как и промпт, которым была решена задача (он пока не был опубликован).



group-telegram.com/seeallochnaya/1261
Create:
Last Update:

Интересная ситуация произошла в Твиттере (но на самом деле она часто проходит и в комментах тут, и в других ТГ-каналах).

5 апреля: VictorTaelin придумал задачку, которую GPT НИКОГДА (он прям выделил) не сможет решить. Почему? Потому что модель же тупая, она не умеет рассуждать и решать задачи, на которых не была натренирована. Узнали себя или критиков из комментариев? 🙂
Для него такая задача и невозможность её решения якобы служила примером того, что модель никогда не сможет двигать науку: «если 15-летний подросток уничтожает модель в какой-либо интеллектуальной задаче вроде этой, то я не буду особо верить в то, что она сможет вылечить рак». Само заявление конечно странное, но допустим (на самом деле он пытался найти такую задачу, которую человек решает, а машина нет — что опять же глупо, люди не умеют то, что может калькулятор — и что?).

Что за задача? Есть 4 символа, B# A# #A #B. Если две разные буквы в некотором наборе символов повёрнуты друг к другу решётками, то их надо поменять местами. B# #A -> #A B#, и так далее, пока никакие два символа нельзя обработать. Сможет ли генеративная LLMка разобраться и решить задачу для строки из, скажем, 7 символов? Автор попробовал несколько раз и у него не вышло. Всё, дело закрыто, AI - хайп, пузырь.

6 апреля: после волны недовольства в комментариях, а также демонстрации того, что иногда модель решает (особенно если немного поменять условие и/или добавить интерпретатор кода, чтобы модель, ну вы знаете, могла писать программы), автор решил сделать конкурс на $10'000. Полные правила можно найти текстом вот тут. Правда он усложнил задачу — теперь символов в такой строке 12 (то есть нужно сделать от 0 до 24 шагов для решения), подаётся 50 примеров, и нужно, чтобы модель решила как минимум 45/50. 12 символов потому, что ему уже показали, что строки длины 7 решаются (иногда).

Главное ограничение — модель не должна писать код, решение должно быть полностью текстовое. Само по себе это глупо, ведь мы отбираем у модели инструмент, которым а) она умеет пользоваться б) хорошо подходит для таких задач. Блин, языки программирования и были придуманы для алгоритмизации задач со строгими правилами! Ну ладно. Считайте, что задача — забить гвоздь, но кувалды и молотки запрещены.

7 апреля: модели решают <10% задач (5 из 50), однако у двух авторов получилось выбить 29/50. Интересно, что тут вырвались вперёд модели Anthropic семейства Claude 3.

8 апреля: конкурс окончен, промпт одного из участников стабильно решает более 90% задач (47 из 50 при первом запуске). Напомню, что задачи даже более сложные, чем в изначальном твите (они длиннее), а главный инструмент решения выключен. Автор признал, что был не прав. Он также указал, что действительно верил, что LLM, аналогичные GPT, просто не могут решить такие задачи.

Автор признал, что его изначальные верования были неправильными, он ошибся. Решение задачи, конечно, не доказывает, что модели смогут придумать лекарства от рака, но они точно могут решать логические-алгоритмические задачи, которые не видели раньше (в целом не новость, но не все верят ведь!).

Интересный факт: финальное решение работает на модели Claude 3 Opus, но ни одно из топ-решений не было на GPT-4. Может, Anthropic уже используют новую архитектуру, которая лишена некоторых недостатков своих предков? Или OpenAI сильно урезают косты и ужимают модели? Возможно, узнаем в будущем — так же как и промпт, которым была решена задача (он пока не был опубликован).

BY Сиолошная


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/seeallochnaya/1261

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. For tech stocks, “the main thing is yields,” Essaye said. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. "Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981.
from ua


Telegram Сиолошная
FROM American