Notice: file_put_contents(): Write of 3856 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 12048 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Старший Авгур | Telegram Webview: senior_augur/321 -
Telegram Group & Telegram Channel
What Matters for Model Merging at Scale?
Статья: https://arxiv.org/abs/2410.03617

Статья про слияние моделей. Основные пять выводов написаны сразу в абстракте:
1. Учить экспертов надо поверх инстрактов, а не базовых моделей.
2. Чем больше модель, тем лучше работает слияние.
3. Если учить на N разных задач и сливать, то генерализация (= качество на отложенных задачах) лучше, чем если учить одну модель на общем наборе данных.
4. Чем больше модель, тем больше разных экспертов можно вливать.
5. Чем больше моделей и экспертов, тем больше пофиг на выбор конкретного метод слияния.

Что вообще за слияние? Самый простой вариант — усреднение весов. То есть мы берём две разных модели (желательно от одного предка), считаем какую-то функцию от их весов, и получаем одну модель той же архитектуры. Конкретных функций бывает много, кроме усреднения см. Task Arithmetic, TIES, DARE.

Все эксперименты проводятся на разных вариантах PaLM-2, гугловой проприетарной модели. Всего есть N задач, для каждой из них делается отдельный тюн. Задачи берут из T0. Их делят на две категории: held-in и held-out. Тюнят модели на held-in, полностью, без Лоры.

Результаты 1 и 4 как по мне довольно очевидны, поэтому сосредоточимся на 2, 3 и 5. Третий результат особенно интересен, потому что он очень сильный: можно просто обучить 8 моделей на разные задачи, и итоговая модель не только будет хороша в этих задачах, но и станет в целом лучше (= качество на отложенных задачах станет выше) 😱

Бейзлайн: версии модели, обученные сразу на всех задачах. 24B модель, смёрженная из 8 экспертов, работает на уровне бейзлайна, 64B модель — значимо его превосходит. При обучении поверх базовой модели (вместо инстракта) ситуация не такая радужная, но всё равно неплохая. Второй результат про то же, но на held-in задачах. Там для 8 экспертов у 64B итоговое качество около 90% от бейзлайна, и чем меньше модель — тем хуже.

Что же касается последнего результата, он просто очень приятный. Для больших моделей вообще не очень важно, как именно сливать, получается одно и то же с точки зрения качества ☺️

Самое крутое в слиянии — возможность переиспользовать кучи GPU часов других людей. Мне в статье не хватило разве что исследований того, насколько хорошо сливаются модели разных форматов промптов. В остальном — это очень хороший повод всё это активнее применять.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/senior_augur/321
Create:
Last Update:

What Matters for Model Merging at Scale?
Статья: https://arxiv.org/abs/2410.03617

Статья про слияние моделей. Основные пять выводов написаны сразу в абстракте:
1. Учить экспертов надо поверх инстрактов, а не базовых моделей.
2. Чем больше модель, тем лучше работает слияние.
3. Если учить на N разных задач и сливать, то генерализация (= качество на отложенных задачах) лучше, чем если учить одну модель на общем наборе данных.
4. Чем больше модель, тем больше разных экспертов можно вливать.
5. Чем больше моделей и экспертов, тем больше пофиг на выбор конкретного метод слияния.

Что вообще за слияние? Самый простой вариант — усреднение весов. То есть мы берём две разных модели (желательно от одного предка), считаем какую-то функцию от их весов, и получаем одну модель той же архитектуры. Конкретных функций бывает много, кроме усреднения см. Task Arithmetic, TIES, DARE.

Все эксперименты проводятся на разных вариантах PaLM-2, гугловой проприетарной модели. Всего есть N задач, для каждой из них делается отдельный тюн. Задачи берут из T0. Их делят на две категории: held-in и held-out. Тюнят модели на held-in, полностью, без Лоры.

Результаты 1 и 4 как по мне довольно очевидны, поэтому сосредоточимся на 2, 3 и 5. Третий результат особенно интересен, потому что он очень сильный: можно просто обучить 8 моделей на разные задачи, и итоговая модель не только будет хороша в этих задачах, но и станет в целом лучше (= качество на отложенных задачах станет выше) 😱

Бейзлайн: версии модели, обученные сразу на всех задачах. 24B модель, смёрженная из 8 экспертов, работает на уровне бейзлайна, 64B модель — значимо его превосходит. При обучении поверх базовой модели (вместо инстракта) ситуация не такая радужная, но всё равно неплохая. Второй результат про то же, но на held-in задачах. Там для 8 экспертов у 64B итоговое качество около 90% от бейзлайна, и чем меньше модель — тем хуже.

Что же касается последнего результата, он просто очень приятный. Для больших моделей вообще не очень важно, как именно сливать, получается одно и то же с точки зрения качества ☺️

Самое крутое в слиянии — возможность переиспользовать кучи GPU часов других людей. Мне в статье не хватило разве что исследований того, насколько хорошо сливаются модели разных форматов промптов. В остальном — это очень хороший повод всё это активнее применять.

BY Старший Авгур


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/senior_augur/321

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts.
from ua


Telegram Старший Авгур
FROM American