Notice: file_put_contents(): Write of 6050 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 14242 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Копирайтинг с Даниилом Шардаковым | Telegram Webview: shardcopy/529 -
Telegram Group & Telegram Channel
В последнее время многие стали очень рассчитывать на нейросети. Это не плохо и не хорошо. Это просто есть. А все остальное зависит от того, кто делает выводы.

Например, заказчики говорят: "Всё, копирайтеры! Вы больше не нужны! У нас теперь есть нейросети! Ха-ха-ха!" То для копирайтеров это вроде как плохо. А для заказчиков — хорошо. Во всяком случае, на первый взгляд.

Но если присмотреться, то есть нюанс, который многие не учитывают. Называется он "выборка из доступных данных". И здесь у нейросетей кроется слабое место. Их ахиллесова пята. Сейчас поясню, это очень интересный момент.

Если Вы пользовались сервисом контекстной рекламы Яндекс.Директ, то могли заметить, что там сейчас используется искусственный интеллект, чтобы быстро написать заголовки и тексты объявлений, исходя из выбранной ниши.

Так вот, по умолчанию этот ИИ просто генерирует избитые клише: высокое качество, опыт и профессионализм, быстрые поставки, гарантии производителя и прочее. Проще говоря, он использует те конструкции, которые встречает в текстах, на которых учился. Потому что самые популярные нейросети (ChatGPT, Copilot, Gemini, Aria) — это так называемые языковые модели. Они генерируют текст на базе того, что до этого изучили.

А теперь самое интересное. Если Вы попросите нейросеть написать текст коммерческого предложения с нуля, то на выходе в большинстве случаев получите абстрактную ерунду. А почему? А потому что большая часть коммерческих предложений, которые нейросети изучают в интернете — и есть та самая абстрактная ерунда, которую люди перепечатывают друг у друга.

И поскольку нейросеть не знает, что ерунда, а что — нет, она использует то, что использует. А если данных не хватает, то додумывает или вставляет вообще не имеющие отношения к делу фрагменты.

То же самое касается и любых других текстов: статей, скриптов, посадочных страниц. Нейросети часто не знают контекста и деталей, а большинство людей слишком ленивы, чтобы ставить детальную задачу.

Курьезный пример из практики. У меня есть студент. В одном из проектов он решил вместо того, чтобы самому вникнуть в проект и составить карточку задачи, отдать все это дело на откуп нейросети. И поскольку задача была специфическая, и данных по ней особо не было, нейросеть составила ему дивный винегрет из всего того, что знала или придумала. Причем ничего из этого винегрета не имело отношения к делу. Но со стороны все вроде как смотрелось вполне логично и презентабельно.

Студента это не смутило, и он на базе полученных данных начал делать анализ и разрабатывать макет, плодя ошибки в геометрической прогрессии. В итоге все закончилось печально.

К чему я это. К тому, что копирайтеры часто решают специфические задачи. В этих задачах есть нюансы, которые нужно учитывать. Но у нейросетей по этим вопросам нет достаточных данных, а потому они не могут выдать адекватный ответ. Вот и получается, что там, где нужны предметные данные, анализ и конкретика, они вставляют абстрактную воду и клише, абстракции и домыслы, от которых пользы чуть меньше, чем никакой.

При этом нейросети удобно использовать точечно, если разбить задачу на подзадачи и часть решать с помощью ИИ, а часть — самостоятельно. Но, опять же, для этого нужны знания и навыки. Поэтому нужны и копирайтеры.

И еще один пример. На днях пришел проект — жертва легкомысленного отношения к нейросетям. В проекте все: от статей до коммерческих страниц было сгенерировано роботом и «причесано» силами штатных сотрудников. С виду все смотрелось здорово, и заказчик был очень доволен, потому что сэкономил кучу денег.

Но вот незадача: не прошло и трех недель как сайт попал в бан поисковых систем (что неудивительно, т.к. нейросети не пишут уникальный контент, а синтезируют его на базе того, что уже изучили), а отклик с контекстной рекламы был ниже плинтуса.

В итоге заказчику пришлось не только тратить в разы больше денег, чтобы все переделать, но и еще большую сумму и кучу времени, чтобы вывести сайт из-под фильтров поисковиков.

Вот так-то. Берегите себя.

———
Обучение копирайтингу с практикой и обратной связью



group-telegram.com/shardcopy/529
Create:
Last Update:

В последнее время многие стали очень рассчитывать на нейросети. Это не плохо и не хорошо. Это просто есть. А все остальное зависит от того, кто делает выводы.

Например, заказчики говорят: "Всё, копирайтеры! Вы больше не нужны! У нас теперь есть нейросети! Ха-ха-ха!" То для копирайтеров это вроде как плохо. А для заказчиков — хорошо. Во всяком случае, на первый взгляд.

Но если присмотреться, то есть нюанс, который многие не учитывают. Называется он "выборка из доступных данных". И здесь у нейросетей кроется слабое место. Их ахиллесова пята. Сейчас поясню, это очень интересный момент.

Если Вы пользовались сервисом контекстной рекламы Яндекс.Директ, то могли заметить, что там сейчас используется искусственный интеллект, чтобы быстро написать заголовки и тексты объявлений, исходя из выбранной ниши.

Так вот, по умолчанию этот ИИ просто генерирует избитые клише: высокое качество, опыт и профессионализм, быстрые поставки, гарантии производителя и прочее. Проще говоря, он использует те конструкции, которые встречает в текстах, на которых учился. Потому что самые популярные нейросети (ChatGPT, Copilot, Gemini, Aria) — это так называемые языковые модели. Они генерируют текст на базе того, что до этого изучили.

А теперь самое интересное. Если Вы попросите нейросеть написать текст коммерческого предложения с нуля, то на выходе в большинстве случаев получите абстрактную ерунду. А почему? А потому что большая часть коммерческих предложений, которые нейросети изучают в интернете — и есть та самая абстрактная ерунда, которую люди перепечатывают друг у друга.

И поскольку нейросеть не знает, что ерунда, а что — нет, она использует то, что использует. А если данных не хватает, то додумывает или вставляет вообще не имеющие отношения к делу фрагменты.

То же самое касается и любых других текстов: статей, скриптов, посадочных страниц. Нейросети часто не знают контекста и деталей, а большинство людей слишком ленивы, чтобы ставить детальную задачу.

Курьезный пример из практики. У меня есть студент. В одном из проектов он решил вместо того, чтобы самому вникнуть в проект и составить карточку задачи, отдать все это дело на откуп нейросети. И поскольку задача была специфическая, и данных по ней особо не было, нейросеть составила ему дивный винегрет из всего того, что знала или придумала. Причем ничего из этого винегрета не имело отношения к делу. Но со стороны все вроде как смотрелось вполне логично и презентабельно.

Студента это не смутило, и он на базе полученных данных начал делать анализ и разрабатывать макет, плодя ошибки в геометрической прогрессии. В итоге все закончилось печально.

К чему я это. К тому, что копирайтеры часто решают специфические задачи. В этих задачах есть нюансы, которые нужно учитывать. Но у нейросетей по этим вопросам нет достаточных данных, а потому они не могут выдать адекватный ответ. Вот и получается, что там, где нужны предметные данные, анализ и конкретика, они вставляют абстрактную воду и клише, абстракции и домыслы, от которых пользы чуть меньше, чем никакой.

При этом нейросети удобно использовать точечно, если разбить задачу на подзадачи и часть решать с помощью ИИ, а часть — самостоятельно. Но, опять же, для этого нужны знания и навыки. Поэтому нужны и копирайтеры.

И еще один пример. На днях пришел проект — жертва легкомысленного отношения к нейросетям. В проекте все: от статей до коммерческих страниц было сгенерировано роботом и «причесано» силами штатных сотрудников. С виду все смотрелось здорово, и заказчик был очень доволен, потому что сэкономил кучу денег.

Но вот незадача: не прошло и трех недель как сайт попал в бан поисковых систем (что неудивительно, т.к. нейросети не пишут уникальный контент, а синтезируют его на базе того, что уже изучили), а отклик с контекстной рекламы был ниже плинтуса.

В итоге заказчику пришлось не только тратить в разы больше денег, чтобы все переделать, но и еще большую сумму и кучу времени, чтобы вывести сайт из-под фильтров поисковиков.

Вот так-то. Берегите себя.

———
Обучение копирайтингу с практикой и обратной связью

BY Копирайтинг с Даниилом Шардаковым


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/shardcopy/529

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. You may recall that, back when Facebook started changing WhatsApp’s terms of service, a number of news outlets reported on, and even recommended, switching to Telegram. Pavel Durov even said that users should delete WhatsApp “unless you are cool with all of your photos and messages becoming public one day.” But Telegram can’t be described as a more-secure version of WhatsApp. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site.
from ua


Telegram Копирайтинг с Даниилом Шардаковым
FROM American