Notice: file_put_contents(): Write of 1599 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 9791 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
сладко стянул | Telegram Webview: sweet_homotopy/1936 -
Telegram Group & Telegram Channel
сладко стянул
Как настроиться на праздник? Вспомнить, что конечнопорожденные модули над областями главных идеалов* устроены как никогда приятно: Теорема: пусть k — ОГИ, M — к.п. k-модуль. Тогда M раскладывается в прямую сумму циклических модулей: M = k/(d_1)⊕k/(d_2)⊕..⊕k/(d_n)…
А я давно хотел понять по гомологическим данным, "сколько* нужно образующих и соотношений" для копредставления связной ассоциативной k-алгебры A. Ответ простой, если k — поле: это размерности векторных пространств Tor_1^A(k,k) и Tor_2^A(k,k).

Сегодня я проверил, что он чуть-чуть обобщается:

Теорема. Пусть k — ОГИ, A — связная ассоциативная k-алгебра конечного типа. Тогда
(1) в любом однородном копредставлении алгебры A хотя бы gen(Tor_1) образующих и хотя бы rel(Tor_1)+gen(Tor_2) соотношений;
(2) существует однородное копредставление, в котором ровно gen(Tor_1) образующих и ровно rel(Tor_1)+gen(Tor_2) соотношений.

[при этом gen и rel можно считать покомпонентно: образующих степени i нужно ровно gen(Tor_{1,i}), и аналогично с соотношениями.]

Пример: для алгебры
A=T(x,y)/(5x³=8y², 21y=0),
deg(x)=2, deg(y)=3,
имеем
Tor_{1,2} = k,
Tor_{1,3} = k/(21),
Tor_{2,6} = k,
остальные Tor_{1,*}, Tor_{2,*} нулевые. Первое соотношение порождает Tor_2, второе даёт кручение в Tor_1.

Для произвольного k получаются оценки снизу и сверху, но пока не знаю, совпадают они или нет. Хотите сформулирую? Вопрос в предыдущем посте — примерно про это

*Для простоты я предполагаю, что алгебра имеет конечный тип, то есть каждая градуированная компонента — к.п. k-модуль. Тогда образующих/соотношений в каждой размерности нужно только конечное число, поэтому вопрос корректен. Да и градуированные k-модули Tor_1 и Tor_2 тоже имеют конечный тип



group-telegram.com/sweet_homotopy/1936
Create:
Last Update:

А я давно хотел понять по гомологическим данным, "сколько* нужно образующих и соотношений" для копредставления связной ассоциативной k-алгебры A. Ответ простой, если k — поле: это размерности векторных пространств Tor_1^A(k,k) и Tor_2^A(k,k).

Сегодня я проверил, что он чуть-чуть обобщается:

Теорема. Пусть k — ОГИ, A — связная ассоциативная k-алгебра конечного типа. Тогда
(1) в любом однородном копредставлении алгебры A хотя бы gen(Tor_1) образующих и хотя бы rel(Tor_1)+gen(Tor_2) соотношений;
(2) существует однородное копредставление, в котором ровно gen(Tor_1) образующих и ровно rel(Tor_1)+gen(Tor_2) соотношений.

[при этом gen и rel можно считать покомпонентно: образующих степени i нужно ровно gen(Tor_{1,i}), и аналогично с соотношениями.]

Пример: для алгебры
A=T(x,y)/(5x³=8y², 21y=0),
deg(x)=2, deg(y)=3,
имеем
Tor_{1,2} = k,
Tor_{1,3} = k/(21),
Tor_{2,6} = k,
остальные Tor_{1,*}, Tor_{2,*} нулевые. Первое соотношение порождает Tor_2, второе даёт кручение в Tor_1.

Для произвольного k получаются оценки снизу и сверху, но пока не знаю, совпадают они или нет. Хотите сформулирую? Вопрос в предыдущем посте — примерно про это

*Для простоты я предполагаю, что алгебра имеет конечный тип, то есть каждая градуированная компонента — к.п. k-модуль. Тогда образующих/соотношений в каждой размерности нужно только конечное число, поэтому вопрос корректен. Да и градуированные k-модули Tor_1 и Tor_2 тоже имеют конечный тип

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/1936

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War."
from ua


Telegram сладко стянул
FROM American