Telegram Group & Telegram Channel
Минутка гомотопической суеты

Я пойду дорогой той где никто не проходил


Будем говорить, что пространство X имеет конечный тип, если все группы π_n(X) конечно порождены. (Если X односвязно, то гомотопические группы можно заменить на целочисленные гомологии, а ещё тогда у X есть CW-модель, у которой в каждой размерности конечное число клеток.)

Определим четыре класса:

W := класс односвязных топологических пространств конечного типа, гомотопически эквивалентных букетам сфер;

P+ := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям сфер и петель на сферах;

P := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям S^1, S^3, S^7 и петель на сферах;

P- := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям петель на сферах.

(Здесь "петли на сферах" — это пространства вида ΩS^n. Все произведения и букеты могут быть бесконечными, но из слов "конечного типа" следует, что в каждой размерности их конечное число. Например, всякое пространство из W выглядит как букет, содержащий для каждого n>1 по B_n копий n-мерной сферы, где B_n≥0 любые конечные)



group-telegram.com/sweet_homotopy/2032
Create:
Last Update:

Минутка гомотопической суеты

Я пойду дорогой той где никто не проходил


Будем говорить, что пространство X имеет конечный тип, если все группы π_n(X) конечно порождены. (Если X односвязно, то гомотопические группы можно заменить на целочисленные гомологии, а ещё тогда у X есть CW-модель, у которой в каждой размерности конечное число клеток.)

Определим четыре класса:

W := класс односвязных топологических пространств конечного типа, гомотопически эквивалентных букетам сфер;

P+ := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям сфер и петель на сферах;

P := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям S^1, S^3, S^7 и петель на сферах;

P- := класс связных топологических пространств конечного типа, гомотопически эквивалентных произведениям петель на сферах.

(Здесь "петли на сферах" — это пространства вида ΩS^n. Все произведения и букеты могут быть бесконечными, но из слов "конечного типа" следует, что в каждой размерности их конечное число. Например, всякое пространство из W выглядит как букет, содержащий для каждого n>1 по B_n копий n-мерной сферы, где B_n≥0 любые конечные)

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2032

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram.
from ua


Telegram сладко стянул
FROM American