Telegram Group & Telegram Channel
Мои ноги обогнут за серпантином серпантин

Эти классы пространств забавно взаимодействуют, помимо очевидных включений P- ⊆ P ⊆ P+.

Во-первых, из расслоений Хопфа выводится, что
ΩS^3 ~ ΩS^2 x S^1,
ΩS^7 ~ ΩS^4 x S^3,
ΩS^15 ~ ΩS^8x S^7,
поэтому P- можно определить как "пространства из P, в которых петель на S^2, S^4 и S^8 не меньше, чем копий S^1, S^3, S^7".

Ещё есть вот такая симметрия/сопряжённость:
Утв. 1. Если X ∈ W, то ΩX ∈ P-.
Утв. 2. Если Y ∈ P+, то ΣY ∈ W.
Утв. 3. W замкнуто относительно ретрактов.
(То есть: если X ∈ W и существуют отображения A -i-> X -r-> A, такие что ri: A->A гомотопно тождественному, то A ∈ W)
Утв. 4. P замкнуто относительно ретрактов.

И вот ещё забавные факты:
Утв. 5. Если ΩZ ∈ P+, то ΩZ ∈ P.
Утв. 6. Если ΩΣX ∈ P+, то ΣX∈ W и поэтому ΩΣX ∈ P-.

Зачем это нужно? Иногда кучей рассуждений схожего характера удаётся доказать, что для некоторого Z верно ΩZ ∈ P. Это приятно, но копии S^1, S^3, S^7 мешаются под ногами. Но если заодно мы знаем, что ΩZ — это произведение пространств вида ΩΣX, то из Утв.4 и 6 следует, что "лишних копий нет" — их можно засунуть по Хопфу в петли на сферах, и в итоге ΩZ ∈ P-.



group-telegram.com/sweet_homotopy/2033
Create:
Last Update:

Мои ноги обогнут за серпантином серпантин

Эти классы пространств забавно взаимодействуют, помимо очевидных включений P- ⊆ P ⊆ P+.

Во-первых, из расслоений Хопфа выводится, что
ΩS^3 ~ ΩS^2 x S^1,
ΩS^7 ~ ΩS^4 x S^3,
ΩS^15 ~ ΩS^8x S^7,
поэтому P- можно определить как "пространства из P, в которых петель на S^2, S^4 и S^8 не меньше, чем копий S^1, S^3, S^7".

Ещё есть вот такая симметрия/сопряжённость:
Утв. 1. Если X ∈ W, то ΩX ∈ P-.
Утв. 2. Если Y ∈ P+, то ΣY ∈ W.
Утв. 3. W замкнуто относительно ретрактов.
(То есть: если X ∈ W и существуют отображения A -i-> X -r-> A, такие что ri: A->A гомотопно тождественному, то A ∈ W)
Утв. 4. P замкнуто относительно ретрактов.

И вот ещё забавные факты:
Утв. 5. Если ΩZ ∈ P+, то ΩZ ∈ P.
Утв. 6. Если ΩΣX ∈ P+, то ΣX∈ W и поэтому ΩΣX ∈ P-.

Зачем это нужно? Иногда кучей рассуждений схожего характера удаётся доказать, что для некоторого Z верно ΩZ ∈ P. Это приятно, но копии S^1, S^3, S^7 мешаются под ногами. Но если заодно мы знаем, что ΩZ — это произведение пространств вида ΩΣX, то из Утв.4 и 6 следует, что "лишних копий нет" — их можно засунуть по Хопфу в петли на сферах, и в итоге ΩZ ∈ P-.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2033

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

You may recall that, back when Facebook started changing WhatsApp’s terms of service, a number of news outlets reported on, and even recommended, switching to Telegram. Pavel Durov even said that users should delete WhatsApp “unless you are cool with all of your photos and messages becoming public one day.” But Telegram can’t be described as a more-secure version of WhatsApp. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies.
from ua


Telegram сладко стянул
FROM American